8 research outputs found

    Late Glacial and Holocene Palaeoecology of the Lake St Clair Region, Tasmania

    Get PDF
    This thesis presents a history of regional and local changes in vegetation in the Lake St Clair region, supported by modern vegetation and pollen analyses. The records span into oxygen isotope stage 3, with a focus on the last Glacial Holocene transition and fill a gap in the poorly studied region of Central Tasmania. The vegetation during the last glaciation prior to the Last Glacial Maximum was characterised by widespread Pherosphaera hookeriana dominated alpine coniferous heath growing together with a mosaic of alpine grasslands, herbfields, heathland and sedgeland. The lakes at Clarence Lagoon and Excalibur Bog are inferred to have dried up under the cold and dry climate during the Last Glacial Maximum. The legacy of Pherosphaera hookeriana dominated vegetation extends to the early deglacial sediments in Lake St Clair, declining to only trace representation through the remainder of the late Glacial and Holocene in the wider Lake St Clair region. Deglaciation of Lake St Clair was complete by c. 18.3 cal kyr BP and subsequent replacement of an early mosaic of alpine vegetation types, by subalpine Athrotaxis cupressoides and Diselma archeri dominated rainforest and/or woodland in response to rapidly rising temperatures and precipitation, is in sync with postglacial Antarctic warming and rising sea surface temperatures. A 900-year period of renewed grassland expansion is inferred to represent slightly cooler/drier conditions leading into the Antarctic Cold Reversal, abruptly ended by strong increases in rainforest mid-way through the Antarctic Cold Reversal suggesting a shift to a wetter and warmer climate leading to the establishment of Phyllocladus aspleniifolius-Nothofagus cunninghamii rainforest. The abrupt decline in Phyllocladus aspleniifolius at c. 12.4 cal kyr BP marks the expansion of Nothofagus cunninghamii-Atherosperma moschatum callidendrous rainforest growing under optimal conditions during the Early Holocene, which becomes more complex between c. 10-8 cal kyr when Phyllocladus aspleniifolius returns to high values, together with a secondary peak of Athrotaxis/Diselma under an inferred wetter and warm climate. At c. 8 cal kyr BP, the rainforest taxon Anodopetalum/Eucryphia becomes important and the remainder of the Holocene sees an overall decline in rainforest taxa and increase in sclerophyll and herbaceous taxa and fire activity, which intensifies during the late Holocene. The observed changes in the record are consistent with the onset of ENSO and a more variable climate from c. 8 cal kyr BP and an intensification and cooling temperatures from c. 5 cal kyr BP

    Attention expedites target selection by prioritizing the neural processing of distractor features

    No full text
    Whether doing the shopping, or driving the car - to navigate daily life, our brain has to rapidly identify relevant color signals among distracting ones. Despite a wealth of research, how color attention is dynamically adjusted is little understood. Previous studies suggest that the speed of feature attention depends on the time it takes to enhance the neural gain of cortical units tuned to the attended feature. To test this idea, we had human participants switch their attention on the fly between unpredicted target color alternatives, while recording the electromagnetic brain response to probes matching the target, a non-target, or a distracting alternative target color. Paradoxically, we observed a temporally prioritized processing of distractor colors. A larger neural modulation for the distractor followed by its stronger attenuation expedited target identification. Our results suggest that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations

    Seasonal pollen distribution in the atmosphere of Hobart, Tasmania: preliminary observations and congruence with flowering phenology

    No full text
    The atmospheric pollen loads of Hobart, Tasmania, Australia, were monitored between September 2007 and July 2009. To examine the match of the airborne pollen composition with the flowering duration of their contributing plants, the phenology of native and non-native plants in various habitats near the pollen-trapping site was undertaken between August 2008 and July 2009. The pollen load was found to have a strong seasonal component associated with the start of spring in September. This is incongruent with the peak flowering season of the total taxa in October. In most taxa, atmospheric pollen signatures appeared before flowering was observed in the field. The presence of most pollen types in the atmosphere also exceeded the observed flowering duration of potential pollen-source taxa. Reasons for this may be related to the sampling effort of phenological monitoring, pollen blown in from earlier flowering populations outside of the sampling area, the ability of pollen to be reworked, and the large pollen production of some wind-pollinated taxa. In 20072008, 15 pollen types dominated the atmosphere, accounting for 90% of the airborne pollen load. The top six pollen types belonged to Betula, Cupressaceae, Myrtaceae, Salix, Poaceae and Ulmus. Comparatively, the annual pollen load of Hobart is lower than in most other Australian cities; however, the pollen signal of Betula is inordinately high. Native plants play a minor role as pollen contributors, despite the proximity of native habitats to the pollen-sampling location. The implications of the aerobiological observations are discussed in relation to public health

    Cortical Mechanisms of Prioritizing Selection for Rejection in Visual Search

    No full text
    In visual search, the more one knows about a target, the faster one can find it. Surprisingly, target identification is also faster with knowledge about distractor-features. The latter is paradoxical, as it implies that to avoid the selection of an item, the item must somehow be selected to some degree. This conundrum has been termed the "ignoring paradox", and, to date, little is known about how the brain resolves it. Here, in data from four experiments using neuromagnetic brain recordings in male and female humans, we provide evidence that this paradox is resolved by giving distracting information priority in cortical processing. This attentional priority to distractors manifests as an enhanced early neuromagnetic index, which occurs before target-related processing, and regardless of distractor predictability. It is most pronounced on trials for which a response rapidly occurred, and is followed by a suppression of the distracting information. These observations together suggest that in visual search items cannot be ignored without first being selected.SIGNIFICANCE STATEMENT How can we ignore distracting stimuli in our environment? To do this successfully, a logical hypothesis is that as few neural resources as possible should be devoted to distractor processing. Yet, to avoid devoting resources to a distractor, the brain must somehow mark what to avoid; this is a philosophical problem, which has been termed the "ignoring paradox" or "white bear phenomenon". Here, we use MEG recordings to determine how the human brain resolves this paradox. Our data show that distractors are not only processed, they are given temporal priority, with the brain building a robust representation of the to-be-ignored items. Thus, successful suppression of distractors can only be achieved if distractors are first strongly neurally represented

    Enhanced spatial focusing increases feature-based selection in unattended locations

    No full text
    Attention is a multifaceted phenomenon, which operates on features (e.g., colour or motion) and over space. A fundamental question is whether the attentional selection of features is confined to the spatially-attended location or operates independently across the entire visual field (global feature-based attention, GFBA). Studies providing evidence for GFBA often employ feature probes presented at spatially unattended locations, which elicit enhanced brain responses when they match a currently-attended target feature. However, the validity of this interpretation relies on consistent spatial focusing onto the target. If the probe were to temporarily attract spatial attention, the reported effects could reflect transient spatial selection processes, rather than GFBA. Here, using magnetoencephalographic recordings (MEG) in humans, we manipulate the strength and consistency of spatial focusing to the target by increasing the target discrimination difficulty (Experiment 1), and by demarcating the upcoming target’s location with a placeholder (Experiment 2), to see if GFBA effects are preserved. We observe that motivating stronger spatial focusing to the target did not diminish the effects of GFBA. Instead, aiding spatial pre-focusing with a placeholder enhanced the feature response at unattended locations. Our findings confirm that feature selection effects measured with spatially-unattended probes reflect a true location-independent neural bias

    Decoding the covert shift of spatial attention from electroencephalographic signals permits reliable control of a brain-computer interface

    No full text
    OBJECTIVE: One of the main goals of brain-computer interfaces (BCI) is to restore communication abilities in patients. BCIs often use event-related potentials (ERPs) like the P300 which signals the presence of a target in a stream of stimuli. The P300 and related approaches, however, are inherently limited, as they require many stimulus presentations to obtain a usable control signal. Many approaches depend on gaze-direction to focus the target, which is also not a viable approach in many cases, because eye movements might be impaired in potential users. Here we report on a BCI that avoids both shortcomings by decoding spatial target information, independent of gaze shifts. APPROACH: We present a new method to decode from the electroencephalogram (EEG) covert shifts of attention to one out of four targets simultaneously presented in the left and right visual field. The task is designed to evoke the N2pc component - a hemisphere lateralized response, elicited over the occipital scalp contralateral to the attended target. The decoding approach involves decoding of the N2pc based on data-driven estimation of spatial filters and a correlation measure. MAIN RESULTS: Despite variability of decoding performance across subjects, 22 out of 24 subjects performed well above chance level. Six subjects even exceeded 80% (cross-validated: 89%) correct predictions in a four-class discrimination task. Hence, the single-trial N2pc proves to be a component that allows for reliable BCI control. An offline analysis of the EEG data with respect to their dependence on stimulation time and number of classes demonstrates that the present method is also a workable approach for two-class tasks. SIGNIFICANCE: Our method extends the range of strategies for gaze-independent BCI control. The proposed decoding approach has the potential to be efficient in similar applications intended to decode ERPs

    A cortical zoom-in operation underlies covert shifts of visual spatial attention

    No full text
    Shifting the focus of attention without moving the eyes poses challenges for signal coding in visual cortex in terms of spatial resolution, signal routing, and cross-talk. Little is known how these problems are solved during focus shifts. Here, we analyze the spatiotemporal dynamic of neuromagnetic activity in human visual cortex as a function of the size and number of focus shifts in visual search. We find that large shifts elicit activity modulations progressing from highest (IT) through mid-level (V4) to lowest hierarchical levels (V1). Smaller shifts cause those modulations to start at lower levels in the hierarchy. Successive shifts involve repeated backward progressions through the hierarchy. We conclude that covert focus shifts arise from a cortical coarse-to-fine process progressing from retinotopic areas with larger toward areas with smaller receptive fields. This process localizes the target and increases the spatial resolution of selection, which resolves the above issues of cortical coding
    corecore