5,136 research outputs found

    Stability of continuously pumped atom lasers

    Get PDF
    A multimode model of a continuously pumped atom laser is shown to be unstable below a critical value of the scattering length. Above the critical scattering length, the atom laser reaches a steady state, the stability of which increases with pumping. Below this limit the laser does not reach a steady state. This instability results from the competition between gain and loss for the excited states of the lasing mode. It will determine a fundamental limit for the linewidth of an atom laser beam.Comment: 4 page

    Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled atom laser beams

    Get PDF
    We examine the properties of an atom laser produced by outcoupling from a Bose-Einstein condensate with squeezed light. We model the multimode dynamics of the output field and show that a significant amount of squeezing can be transfered from an optical mode to a propagating atom laser beam. We use this to demonstrate that two-mode squeezing can be used to produce twin atom laser beams with continuous variable entanglement in amplitude and phase.Comment: 11 pages, 14 figure

    Measuring the quantum statistics of an atom laser beam

    Get PDF
    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.Comment: 4 pages, 3 figure

    Quantum depletion of collapsing Bose-Einstein condensates

    Get PDF
    We perform the first numerical three-dimensional studies of quantum field effects in the Bosenova experiment on collapsing condensates by E. Donley et al. [Nature 415, 39 (2002)] using the exact experimental geometry. In a stochastic truncated Wigner simulation of the collapse, the collapse times are larger than the experimentally measured values. We find that a finite temperature initial state leads to an increased creation rate of uncondensed atoms, but not to a reduction of the collapse time. A comparison of the time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more tractable spherical trap shows excellent agreement between the uncondensed populations. We conclude that the discrepancy between the experimental and theoretical values of the collapse time cannot be explained by Gaussian quantum fluctuations or finite temperature effects.Comment: 9 pages, 4 figures, replaced with published versio

    Cognitive interviewing as tool for enhancing the accuracy of the interpretation of quantitative findings

    Get PDF
    This paper contrasts findings from a quantitative survey with those from a cognitive interviewing follow-up investigation on a subset of the same respondents. The data were gathered as part of a larger study to explore measurement error across three modes of data collection, but this paper focuses on the question format experiments rather than the mode effects part of the larger study. Three examples are presented which demonstrate how cognitive interviewing can cast new light on quantitative results by increasing the accuracy of the inferences made. These include instances where: (1) quantitative indicators of poor respondent behaviour (e.g., acquiescence bias on agree/disagree questions) are over-estimates, (2) similar quantitative response distributions across satisfaction and behavioural questions (from a fully-labelled versus end-labelled experiment) imply similar respondent satisficing behaviour, but cognitive interviews show that different response processes are at work and (3) unlikely quantitative findings (from an experiment comparing 3 vs. 7 or 8 response options) could easily be dismissed as due to chance but were instead the result of unforeseen respondent difficulties. The paper concludes with a discussion of the value of using a cognitive interviewing follow-up study as a tool in the interpretation of ambiguous quantitative findings

    Classical noise and flux: the limits of multi-state atom lasers

    Get PDF
    By direct comparison between experiment and theory, we show how the classical noise on a multi-state atom laser beam increases with increasing flux. The trade off between classical noise and flux is an important consideration in precision interferometric measurement. We use periodic 10 microsecond radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein condensate. The resulting atom laser beam has suprising structure which is explained using three dimensional simulations of the five state Gross-Pitaevskii equations.Comment: 4 pages, 3 figure

    Band Gaps for Atoms in Light based Waveguides

    Full text link
    The energy spectrum for a system of atoms in a periodic potential can exhibit a gap in the band structure. We describe a system in which a laser is used to produce a mechanical potential for the atoms, and a standing wave light field is used to shift the atomic levels using the Autler-Townes effect, which produces a periodic potential. The band structure for atoms guided by a hollow optical fiber waveguide is calculated in three dimensions with quantised external motion. The size of the band gap is controlled by the light guided by the fiber. This variable band structure may allow the construction of devices which can cool atoms. The major limitation on this device would be the spontaneous emission losses.Comment: 7 pages, four postscript figures, uses revtex.sty, available through http://online.anu.edu.au/Physics/papers/atom.htm
    • …
    corecore