5,136 research outputs found
Stability of continuously pumped atom lasers
A multimode model of a continuously pumped atom laser is shown to be unstable
below a critical value of the scattering length. Above the critical scattering
length, the atom laser reaches a steady state, the stability of which increases
with pumping. Below this limit the laser does not reach a steady state. This
instability results from the competition between gain and loss for the excited
states of the lasing mode. It will determine a fundamental limit for the
linewidth of an atom laser beam.Comment: 4 page
Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled atom laser beams
We examine the properties of an atom laser produced by outcoupling from a
Bose-Einstein condensate with squeezed light. We model the multimode dynamics
of the output field and show that a significant amount of squeezing can be
transfered from an optical mode to a propagating atom laser beam. We use this
to demonstrate that two-mode squeezing can be used to produce twin atom laser
beams with continuous variable entanglement in amplitude and phase.Comment: 11 pages, 14 figure
Measuring the quantum statistics of an atom laser beam
We propose and analyse a scheme for measuring the quadrature statistics of an
atom laser beam using extant optical homodyning and Raman atom laser
techniques. Reversal of the normal Raman atom laser outcoupling scheme is used
to map the quantum statistics of an incoupled beam to an optical probe beam. A
multimode model of the spatial propagation dynamics shows that the Raman
incoupler gives a clear signal of de Broglie wave quadrature squeezing for both
pulsed and continuous inputs. Finally, we show that experimental realisations
of the scheme may be tested with existing methods via measurements of Glauber's
intensity correlation function.Comment: 4 pages, 3 figure
Quantum depletion of collapsing Bose-Einstein condensates
We perform the first numerical three-dimensional studies of quantum field
effects in the Bosenova experiment on collapsing condensates by E. Donley et
al. [Nature 415, 39 (2002)] using the exact experimental geometry. In a
stochastic truncated Wigner simulation of the collapse, the collapse times are
larger than the experimentally measured values. We find that a finite
temperature initial state leads to an increased creation rate of uncondensed
atoms, but not to a reduction of the collapse time. A comparison of the
time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more
tractable spherical trap shows excellent agreement between the uncondensed
populations. We conclude that the discrepancy between the experimental and
theoretical values of the collapse time cannot be explained by Gaussian quantum
fluctuations or finite temperature effects.Comment: 9 pages, 4 figures, replaced with published versio
Cognitive interviewing as tool for enhancing the accuracy of the interpretation of quantitative findings
This paper contrasts findings from a quantitative survey with those from a cognitive interviewing follow-up investigation on a subset of the same respondents. The data were gathered as part of a larger study to explore measurement error across three modes of data collection, but this paper focuses on the question format experiments rather than the mode effects part of the larger study. Three examples are presented which demonstrate how cognitive interviewing can cast new light on quantitative results by increasing the accuracy of the inferences made. These include instances where: (1) quantitative indicators of poor respondent behaviour (e.g., acquiescence bias on agree/disagree questions) are over-estimates, (2) similar quantitative response distributions across satisfaction and behavioural questions (from a fully-labelled versus end-labelled experiment) imply similar respondent satisficing behaviour, but cognitive interviews show that different response processes are at work and (3) unlikely quantitative findings (from an experiment comparing 3 vs. 7 or 8 response options) could easily be dismissed as due to chance but were instead the result of unforeseen respondent difficulties. The paper concludes with a discussion of the value of using a cognitive interviewing follow-up study as a tool in the interpretation of ambiguous quantitative findings
Classical noise and flux: the limits of multi-state atom lasers
By direct comparison between experiment and theory, we show how the classical
noise on a multi-state atom laser beam increases with increasing flux. The
trade off between classical noise and flux is an important consideration in
precision interferometric measurement. We use periodic 10 microsecond
radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein
condensate. The resulting atom laser beam has suprising structure which is
explained using three dimensional simulations of the five state
Gross-Pitaevskii equations.Comment: 4 pages, 3 figure
Band Gaps for Atoms in Light based Waveguides
The energy spectrum for a system of atoms in a periodic potential can exhibit
a gap in the band structure. We describe a system in which a laser is used to
produce a mechanical potential for the atoms, and a standing wave light field
is used to shift the atomic levels using the Autler-Townes effect, which
produces a periodic potential. The band structure for atoms guided by a hollow
optical fiber waveguide is calculated in three dimensions with quantised
external motion. The size of the band gap is controlled by the light guided by
the fiber. This variable band structure may allow the construction of devices
which can cool atoms. The major limitation on this device would be the
spontaneous emission losses.Comment: 7 pages, four postscript figures, uses revtex.sty, available through
http://online.anu.edu.au/Physics/papers/atom.htm
- …