7,510 research outputs found
Best interests, dementia and the Mental Capacity Act (2005)
The Mental Capacity Act (2005) is an impressive piece of
legislation that deserves serious ethical attention, but
much of the commentary on the Act has focussed on its
legal and practical implications rather than the underlying
ethical concepts. This paper examines the approach that
the Act takes to best interests. The Act does not provide
an account of the underlying concept of best interests.
Instead it lists factors that must be considered in
determining best interests, and the Code of Practice to
the Act states that this list is incomplete. This paper
argues that this general approach is correct, contrary to
some accounts of best interests. The checklist includes
items that are unhelpful. Furthermore, neither the Act nor
its Code of Practice provides sufficient guidance to carers
faced with difficult decisions concerning best interests.
This paper suggests ways in which the checklist can be
developed and discusses cases that could be used in an
updated Code of Practice
Stabilising entanglement by quantum jump-based feedback
We show that direct feedback based on quantum jump detection can be used to
generate entangled steady states. We present a strategy that is insensitive to
detection inefficiencies and robust against errors in the control Hamiltonian.
This feedback procedure is also shown to overcome spontaneous emission effects
by stabilising states with high degree of entanglement.Comment: 5 pages, 4 figure
Generating controllable atom-light entanglement with a Raman atom laser system
We introduce a scheme for creating continuous variable entanglement between
an atomic beam and an optical field, by using squeezed light to outcouple atoms
from a BEC via a Raman transition. We model the full multimode dynamics of the
atom laser beam and the squeezed optical field, and show that with appropriate
two-photon detuning and two-photon Rabi frequency, the transmitted light is
entangled in amplitude and phase with the outcoupled atom laser beam. The
degree of entanglement is controllable via changes in the two-photon Rabi
frequency of the outcoupling process.Comment: 4 pages, 4 figure
Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk
This paper introduces an open-ended sequential algorithm for computing the
p-value of a test using Monte Carlo simulation. It guarantees that the
resampling risk, the probability of a different decision than the one based on
the theoretical p-value, is uniformly bounded by an arbitrarily small constant.
Previously suggested sequential or non-sequential algorithms, using a bounded
sample size, do not have this property. Although the algorithm is open-ended,
the expected number of steps is finite, except when the p-value is on the
threshold between rejecting and not rejecting. The algorithm is suitable as
standard for implementing tests that require (re-)sampling. It can also be used
in other situations: to check whether a test is conservative, iteratively to
implement double bootstrap tests, and to determine the sample size required for
a certain power.Comment: Major Revision 15 pages, 4 figure
Spatial mapping of hepatitis C prevalence in recent injecting drug users in contact with services.
In developed countries the majority of hepatitis C virus (HCV) infections occur in injecting drug users (IDUs) with prevalence in IDUs often high, but with wide geographical differences within countries. Estimates of local prevalence are needed for planning services for IDUs, but it is not practical to conduct HCV seroprevalence surveys in all areas. In this study survey data from IDUs attending specialist services were collected in 52/149 sites in England between 2006 and 2008. Spatially correlated random-effects models were used to estimate HCV prevalence for all sites, using auxiliary data to aid prediction. Estimates ranged from 14% to 82%, with larger cities, London and the North West having the highest HCV prevalence. The methods used generated robust estimates for each area, with a well-identified spatial pattern that improved predictions. Such models may be of use in other areas of study where surveillance data are sparse
Stability of continuously pumped atom lasers
A multimode model of a continuously pumped atom laser is shown to be unstable
below a critical value of the scattering length. Above the critical scattering
length, the atom laser reaches a steady state, the stability of which increases
with pumping. Below this limit the laser does not reach a steady state. This
instability results from the competition between gain and loss for the excited
states of the lasing mode. It will determine a fundamental limit for the
linewidth of an atom laser beam.Comment: 4 page
- …