8 research outputs found
Microenvironment-Dependent Gradient of CTL Exhaustion in the AE17sOVA Murine Mesothelioma Tumor Model
The immune system, and in particular, cytotoxic CD8+ T cells (CTLs), plays a vital part in the prevention and elimination of tumors. In many patients, however, CTL-mediated tumor killing ultimately fails in the clearance of cancer cells resulting in disease progression, in large part due to the progression of effector CTL into exhausted CTL. While there have been major breakthroughs in the development of CTL-mediated “reinvigoration”-driven immunotherapies such as checkpoint blockade therapy, there remains a need to better understand the drivers behind the development of T cell exhaustion. Our study highlights the unique differences in T cell exhaustion development in tumor-specific CTL which arises over time in a mouse model of mesothelioma. Importantly, we also show that peripheral tumor-specific T cells have a unique expression profile compared to exhausted tumor-infiltrating CTL at a late-stage of tumor progression in mice. Together, these data suggest that greater emphasis shoul
Long-Term Persistence of Exhausted CD8 T Cells in Chronic Infection Is Regulated by MicroRNA-155
Persistent viral infections and tumors drive development of exhausted T (TEX) cells. In these settings, TEX cells establish an important host-pathogen or host-tumor stalemate. However, TEX cells erode over time, leading to loss of pathogen or cancer containment. We identified microRNA (miR)-155 as a key regulator of sustained TEX cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection. Genetic deficiency of miR-155 ablated CD8 T cell responses during chronic infection. Conversely, enhanced miR-155 expression promoted expansion and long-term persistence of TEX cells. However, rather than strictly antagonizing exhaustion, miR-155 promoted a terminal TEX cell subset. Transcriptional profiling identified coordinated control of cell signaling and transcription factor pathways, including the key AP-1 family member Fosl2. Overexpression of Fosl2 reversed the miR-155 effects, identifying a link between miR-155 and the AP-1 transcriptional program in regulating TEX cells. Thus, we identify a mechanism of miR-155 regulation of TEX cells and a key role for Fosl2 in T cell exhaustion. During persistent viral infections, exhausted T cells (TEX) erode quantitatively and qualitatively and therefore fail to provide protection. Stelekati et al. identified microRNA (miR)-155 as a key molecule that can enhance and sustain TEX responses long-term during chronic viral infection
Rapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylation
Exhaustion is a dysfunctional state of cytotoxic CD8+ T cells (CTL) observed in chronic infection and cancer. Current in vivo models of CTL exhaustion using chronic viral infections or cancer yield very few exhausted CTL, limiting the analysis that can be done on these cells. Establishing an in vitro system that rapidly induces CTL exhaustion would therefore greatly facilitate the study of this phenotype, identify the truly exhaustion-associated changes and allow the testing of novel approaches to reverse or prevent exhaustion. Here we show that repeat stimulation of purified TCR transgenic OT-I CTL with their specific peptide induces all the functional (reduced cytokine production and polyfunctionality, decreased in vivo expansion capacity) and phenotypic (increased inhibitory receptors expression and transcription factor changes) characteristics of exhaustion. Importantly, in vitro exhausted cells shared the transcriptomic characteristics of the gold standard of exhaustion, CTL from LCMV cl13 infections. Gene expression of both in vitro and in vivo exhausted CTL was distinct from T cells anergy. Using this system, we show that Tcf7 promoter DNA methylation contributes to TCF1 downregulation in exhausted CTL. Thus this novel in vitro system can be used to identify genes and signaling pathways involved in exhaustion and will facilitate the screening of reagents that prevent/reverse CTL exhaustion
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Phosphatidylinositol 3-kinase p110d isoform regulates CD8+ T cell responses during acute viral and intracellular bacterial infections
The p110d isoform of PI3K is known to play an important role in immunity, yet its contribution to CTL responses has not been fully elucidated. Using murine p110d-deficient CD8+ T cells, we demonstrated a critical role for the p110d subunit in the generation of optimal primary and memory CD8+ T cell responses. This was demonstrated in both acute viral and intracellular bacterial infections in mice. We show tha
Fracture fixation in the operative management of hip fractures (FAITH): an international, multicentre, randomised controlled trial
Background Reoperation rates are high after surgery for hip fractures. We investigated the effect of a sliding hip screw versus cancellous screws on the risk of reoperation and other key outcomes. Methods For this international, multicentre, allocation concealed randomised controlled trial, we enrolled patients aged 50 years or older with a low-energy hip fracture requiring fracture fixation from 81 clinical centres in eight countries. Patients were assigned by minimisation with a centralised computer system to receive a single large-diameter screw with a side-plate (sliding hip screw) or the present standard of care, multiple small-diameter cancellous screws. Surgeons and patients were not blinded but the data analyst, while doing the analyses, remained blinded to treatment groups. The primary outcome was hip reoperation within 24 months after initial surgery to promote fracture healing, relieve pain, treat infection, or improve function. Analyses followed the intention-to-treat principle. This study was registered with ClinicalTrials.gov, number NCT00761813. Findings Between Mar