28 research outputs found

    Dark matter and sub-GeV hidden U(1) in GMSB models

    Full text link
    Motivated by the recent PAMELA and ATIC data, one is led to a scenario with heavy vector-like dark matter in association with a hidden U(1)XU(1)_X sector below GeV scale. Realizing this idea in the context of gauge mediated supersymmetry breaking (GMSB), a heavy scalar component charged under U(1)XU(1)_X is found to be a good dark matter candidate which can be searched for direct scattering mediated by the Higgs boson and/or by the hidden gauge boson. The latter turns out to put a stringent bound on the kinetic mixing parameter between U(1)XU(1)_X and U(1)YU(1)_Y: θ106\theta \lesssim 10^{-6}. For the typical range of model parameters, we find that the decay rates of the ordinary lightest neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable, and the former decay mode leaves displaced vertices of lepton pairs and missing energy with distinctive length scale larger than 20 cm for invariant lepton pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the Sommerfeld effect cannot raise the galactic dark matter annihilation by more than 60 times for the dark matter mass below TeV.Comment: 1+15 pages, 4 figures, version published in JCAP, references added, minor change

    The detection of sub-solar mass dark matter halos

    Full text link
    Dark matter halos of sub-solar mass are the first bound objects to form in cold dark matter theories. In this article, I discuss the present understanding of "microhalos'', their role in structure formation, and the implications of their potential presence, in the interpretation of dark matter experiments.Comment: 18 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics

    R-parity preserving super-WIMP decays

    Full text link
    We point out that when the decay of one electroweak scale super-WIMP state to another occurs at second order in a super-weak coupling constant, this can naturally lead to decay lifetimes that are much larger than the age of the Universe, and create observable consequences for the indirect detection of dark matter. We demonstrate this in a supersymmetric model with Dirac neutrinos, where the right-handed scalar neutrinos are the lightest and next-to-lightest supersymmetric partners. We show that this model produces a super-WIMP decay rate scaling as m_nu^4/(weak scale)^3, and may significantly enhance the fraction of energetic electrons and positrons over anti-protons in the decay products. Such a signature is consistent with the observations recently reported by the PAMELA experiment.Comment: 14 pages, v3 JHEP versio

    The Maximal U(1)LU(1)_L Inverse Seesaw from d=5d=5 Operator and Oscillating Asymmetric Sneutrino Dark Matter

    Get PDF
    The maximal U(1)LU(1)_L supersymmetric inverse seesaw mechanism (MLLSIS) provides a natural way to relate asymmetric dark matter (ADM) with neutrino physics. In this paper we point out that, MLLSIS is a natural outcome if one dynamically realizes the inverse seesaw mechanism in the next-to minimal supersymmetric standard model (NMSSM) via the dimension-five operator (N)2S2/M(N)^2S^2/M_*, with SS the NMSSM singlet developing TeV scale VEV; it slightly violates lepton number due to the suppression by the fundamental scale MM_*, thus preserving U(1)LU(1)_L maximally. The resulting sneutrino is a distinguishable ADM candidate, oscillating and favored to have weak scale mass. A fairly large annihilating cross section of such a heavy ADM is available due to the presence of singlet.Comment: journal versio

    Dark Matter in the MSSM

    Full text link
    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.Comment: 27 pages, 19 figs; Journal version in NJP issue "Focus on Dark Matter and Particle Physics". Previous version had 26 pages, 19 figures. Text and some figures have been update

    Low-Energy Probes of a Warped Extra Dimension

    Full text link
    We investigate a natural realization of a light Abelian hidden sector in an extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we consider a second warped space containing a bulk U(1)_x gauge theory with a characteristic IR scale of order a GeV. This Abelian hidden sector can couple to the standard model via gauge kinetic mixing on a common UV brane. We show that if such a coupling induces significant mixing between the lightest U(1)_x gauge mode and the standard model photon and Z, it can also induce significant mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be possible to probe several KK modes in upcoming fixed-target experiments and meson factories, thereby offering a new way to investigate the structure of an extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as journal versio

    Dark Matter Signals from Cascade Annihilations

    Full text link
    A leading interpretation of the electron/positron excesses seen by PAMELA and ATIC is dark matter annihilation in the galactic halo. Depending on the annihilation channel, the electron/positron signal could be accompanied by a galactic gamma ray or neutrino flux, and the non-detection of such fluxes constrains the couplings and halo properties of dark matter. In this paper, we study the interplay of electron data with gamma ray and neutrino constraints in the context of cascade annihilation models, where dark matter annihilates into light degrees of freedom which in turn decay into leptons in one or more steps. Electron and muon cascades give a reasonable fit to the PAMELA and ATIC data. Compared to direct annihilation, cascade annihilations can soften gamma ray constraints from final state radiation by an order of magnitude. However, if dark matter annihilates primarily into muons, the neutrino constraints are robust regardless of the number of cascade decay steps. We also examine the electron data and gamma ray/neutrino constraints on the recently proposed "axion portal" scenario.Comment: 36 pages, 11 figures, 7 tables; references adde
    corecore