22 research outputs found
An Inverted Repeat in the ospC Operator Is Required for Induction in Borrelia Burgdorferi
Borrelia burgdorferi, the spirochete that causes Lyme disease, differentially regulates synthesis of the outer membrane lipoprotein OspC to infect its host. OspC is required to establish infection but then repressed in the mammal to avoid clearance by the adaptive immune response. Inverted repeats (IR) upstream of the promoter have been implicated as an operator to regulate ospC expression. We molecularly dissected the distal inverted repeat (dIR) of the ospC operator by site-directed mutagenesis at its endogenous location on the circular plasmid cp26. We found that disrupting the dIR but maintaining the proximal IR prevented induction of OspC synthesis by DNA supercoiling, temperature, and pH. Moreover, the base-pairing potential of the two halves of the dIR was more important than the nucleotide sequence in controlling OspC levels. These results describe a cis-acting element essential for the expression of the virulence factor OspC
Differential Disease Susceptibilities in Experimentally Reptarenavirus-Infected Boa Constrictors and Ball Pythons.
Inclusion body disease (IBD) is an infectious disease originally described in captive snakes. It has traditionally been diagnosed by the presence of large eosinophilic cytoplasmic inclusions and is associated with neurological, gastrointestinal, and lymphoproliferative disorders. Previously, we identified and established a culture system for a novel lineage of arenaviruses isolated from boa constrictors diagnosed with IBD. Although ample circumstantial evidence suggested that these viruses, now known as reptarenaviruses, cause IBD, there has been no formal demonstration of disease causality since their discovery. We therefore conducted a long-term challenge experiment to test the hypothesis that reptarenaviruses cause IBD. We infected boa constrictors and ball pythons by cardiac injection of purified virus. We monitored the progression of viral growth in tissues, blood, and environmental samples. Infection produced dramatically different disease outcomes in snakes of the two species. Ball pythons infected with Golden Gate virus (GoGV) and with another reptarenavirus displayed severe neurological signs within 2 months, and viral replication was detected only in central nervous system tissues. In contrast, GoGV-infected boa constrictors remained free of clinical signs for 2 years, despite high viral loads and the accumulation of large intracellular inclusions in multiple tissues, including the brain. Inflammation was associated with infection in ball pythons but not in boa constrictors. Thus, reptarenavirus infection produces inclusions and inclusion body disease, although inclusions per se are neither necessarily associated with nor required for disease. Although the natural distribution of reptarenaviruses has yet to be described, the different outcomes of infection may reflect differences in geographical origin.IMPORTANCE New DNA sequencing technologies have made it easier than ever to identify the sequences of microorganisms in diseased tissues, i.e., to identify organisms that appear to cause disease, but to be certain that a candidate pathogen actually causes disease, it is necessary to provide additional evidence of causality. We have done this to demonstrate that reptarenaviruses cause inclusion body disease (IBD), a serious transmissible disease of snakes. We infected boa constrictors and ball pythons with purified reptarenavirus. Ball pythons fell ill within 2 months of infection and displayed signs of neurological disease typical of IBD. In contrast, boa constrictors remained healthy over 2 years, despite high levels of virus throughout their bodies. This difference matches previous reports that pythons are more susceptible to IBD than boas and could reflect the possibility that boas are natural hosts of these viruses in the wild
Divergent Serpentoviruses in Free-Ranging Invasive Pythons and Native Colubrids in Southern Florida, United States
Burmese python (Python bivittatus) is an invasive snake that has significantly affected ecosystems in southern Florida, United States. Aside from direct predation and competition, invasive species can also introduce nonnative pathogens that can adversely affect native species. The subfamily Serpentovirinae (order Nidovirales) is composed of positive-sense RNA viruses primarily found in reptiles. Some serpentoviruses, such as shingleback nidovirus, are associated with mortalities in wild populations, while others, including ball python nidovirus and green tree python nidovirus can be a major cause of disease and mortality in captive animals. To determine if serpentoviruses were present in invasive Burmese pythons in southern Florida, oral swabs were collected from both free-ranging and long-term captive snakes. Swabs were screened for the presence of serpentovirus by reverse transcription PCR and sequenced. A total serpentovirus prevalence of 27.8% was detected in 318 python samples. Of the initial swabs from 172 free-ranging pythons, 42 (24.4%) were positive for multiple divergent viral sequences comprising four clades across the sampling range. Both sex and snout-vent length were statistically significant factors in virus prevalence, with larger male snakes having the highest prevalence. Sampling location was statistically significant in circulating virus sequence. Mild clinical signs and lesions consistent with serpentovirus infection were observed in a subset of sampled pythons. Testing of native snakes (n = 219, 18 species) in part of the python range found no evidence of python virus spillover; however, five individual native snakes (2.3%) representing three species were PCR positive for unique, divergent serpentoviruses. Calculated pairwise uncorrected distance analysis indicated the newly discovered virus sequences likely represent three novel genera in the subfamily Serpentovirinae. This study is the first to characterize serpentovirus in wild free-ranging pythons or in any free-ranging North America reptile. Though the risk these viruses pose to the invasive and native species is unknown, the potential for spillover to native herpetofauna warrants further investigation
Recommended from our members
dsRNA-Seq: Identification of Viral Infection by Purifying and Sequencing dsRNA
RNA viruses are a major source of emerging and re-emerging infectious diseases around the world. We developed a method to identify RNA viruses that is based on the fact that RNA viruses produce double-stranded RNA (dsRNA) while replicating. Purifying and sequencing dsRNA from the total RNA isolated from infected tissue allowed us to recover dsRNA virus sequences and replicated sequences from single-stranded RNA (ssRNA) viruses. We refer to this approach as dsRNA-Seq. By assembling dsRNA sequences into contigs we identified full length or partial RNA viral genomes of varying genome types infecting mammalian culture samples, identified a known viral disease agent in laboratory infected mice, and successfully detected naturally occurring RNA viral infections in reptiles. Here, we show that dsRNA-Seq is a preferable method for identifying viruses in organisms that don't have sequenced genomes and/or commercially available rRNA depletion reagents. In addition, a significant advantage of this method is the ability to identify replicated viral sequences of ssRNA viruses, which is useful for distinguishing infectious viral agents from potential noninfectious viral particles or contaminants.</p
Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
Ultralight vector dark matter search using data from the KAGRA O3GK run
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
Use of metagenomic sequencing as a tool for pathogen discovery with further investigation of novel reptilian serpentoviruses, The
2019 Summer.Includes bibliographical references.To view the abstract, please see the full text of the document
The <i>ospC</i> operator and mutagenesis strategy.
<p>(A) <i>ospC</i> operator mutations are linked to the kanamycin resistance cassette (<i>flgBp-aphI</i>). The sequence upstream of the <i>ospC</i> gene in <i>B. burgdorferi</i> strain 297 is shown (WT) with the dIR (solid arrows) and the overlapping pIR (dashed arrows). The nucleotides that have been changed are marked in bold. The strain nomenclature is as follows: dIR<sup>+</sup> has the nucleotide sequence changed but the complementarity of the inverted repeats maintained, and dIR<sup>−</sup> has the distal inverted repeat disrupted but the complementarity of the proximal IR intact. (B) PCR of genomic DNA from <i>ospC</i> operator mutants (lane 1, WT with <i>flgBp</i>-<i>aphI</i> cassette; lane 2, dIR<sup>+</sup>; lane 3, dIR<sup>−</sup>; and lane 4, no template control) using primers primers kanR 488R (a) and ospC D1572R+AgeI (b) to determine the orientation of the <i>flgBp</i>-<i>aphI</i> antibiotic resistance cassette.</p
The role of the dIR in OspC synthesis mediated by relaxation of DNA supercoiling.
<p>Immunoblot analysis of whole-cell lysates from strains grown to late log phase at 23°C in 10 ng ml<sup>−1</sup> coumermycin A<sub>1</sub> (Cou) (+) or in DMSO as a solvent control (−). Membranes were probed with antibodies against OspC (upper panel) or FlaB (lower panel).</p