1,230 research outputs found
Magnon topology and thermal Hall effect in trimerized triangular lattice antiferromagnet
The non-trivial magnon band topology and its consequent responses have been
extensively studied in two-dimensional magnetisms. However, the triangular
lattice antiferromagnet (TLAF), the best-known frustrated two-dimensional
magnet, has received less attention than the closely related Kagome system,
because of the spin-chirality cancellation in the umbrella ground state of the
undistorted TLAF. In this work, we study the band topology and the thermal Hall
effect (THE) of the TLAF with (anti-)trimerization distortion under the
external perpendicular magnetic field using the linearized spin wave theory. We
show that the spin-chirality cancellation is removed in such case, giving rise
to the non-trivial magnon band topology and the finite THE. Moreover, the
magnon bands exhibit band topology transitions tuned by the magnetic field. We
demonstrate that such transitions are accompanied by the logarithmic divergence
of the first derivative of the thermal Hall conductivity. Finally, we examine
the above consequences by calculating the THE in the hexagonal manganite
YMnO, well known to have anti-trimerization.Comment: 6 + 7 pages, 3 + 5 figures, 0 + 1 table; Journal reference adde
Competing states for the fractional quantum Hall effect in the 1/3-filled second Landau level
In this work, we investigate the nature of the fractional quantum Hall state
in the 1/3-filled second Landau level (SLL) at filling factor (and
8/3 in the presence of the particle-hole symmetry) via exact diagonalization in
both torus and spherical geometries. Specifically, we compute the overlap
between the exact 7/3 ground state and various competing states including (i)
the Laughlin state, (ii) the fermionic Haffnian state, (iii) the
antisymmetrized product state of two composite fermion seas at 1/6 filling, and
(iv) the particle-hole (PH) conjugate of the parafermion state. All these
trial states are constructed according to a guiding principle called the
bilayer mapping approach, where a trial state is obtained as the
antisymmetrized projection of a bilayer quantum Hall state with interlayer
distance as a variational parameter. Under the proper understanding of the
ground-state degeneracy in the torus geometry, the parafermion state can
be obtained as the antisymmetrized projection of the Halperin (330) state.
Similarly, it is proved in this work that the fermionic Haffnian state can be
obtained as the antisymmetrized projection of the Halperin (551) state. It is
shown that, while extremely accurate at sufficiently large positive Haldane
pseudopotential variation , the Laughlin state loses its
overlap with the exact 7/3 ground state significantly at . At slightly negative , it is shown that the
PH-conjugated parafermion state has a substantial overlap with the exact
7/3 ground state, which is the highest among the above four trial states.Comment: 22 pages, 5 figure
BH3-only Protein Noxa Is a Mediator of Hypoxic Cell Death Induced by Hypoxia-inducible Factor 1α
Hypoxia is a common cause of cell death and is implicated in many disease processes including stroke and chronic degenerative disorders. In response to hypoxia, cells express a variety of genes, which allow adaptation to altered metabolic demands, decreased oxygen demands, and the removal of irreversibly damaged cells. Using polymerase chain reaction–based suppression subtractive hybridization to find genes that are differentially expressed in hypoxia, we identified the BH3-only Bcl-2 family protein Noxa. Noxa is a candidate molecule mediating p53-induced apoptosis. We show that Noxa promoter responds directly to hypoxia via hypoxia-inducible factor (HIF)-1α. Suppression of Noxa expression by antisense oligonucleotides rescued cells from hypoxia-induced cell death and decreased infarction volumes in an animal model of ischemia. Further, we show that reactive oxygen species and resultant cytochrome c release participate in Noxa-mediated hypoxic cell death. Altogether, our results show that Noxa is induced by HIF-1α and mediates hypoxic cell death
Slim Body Weight Is Highly Associated With Enhanced Lipoprotein Functionality, Higher HDL-C, and Large HDL Particle Size in Young Women
There has been no information about the correlations between body weight distribution and lipoprotein metabolism in terms of high-density lipoproteins-cholesterol (HDL-C) and cholesteryl ester transfer protein (CETP). In this study, we analyzed the quantity and quality of HDL correlations in young women (21.5 ± 1.2-years-old) with a slim (n = 21, 46.2 ± 3.8 kg) or plump (n = 30, 54.6 ± 4.4 kg) body weight. Body weight was inversely correlated with the percentage of HDL-C in total cholesterol (TC). The plump group showed 40% higher body fat (26 ± 3 %) and 86% more visceral fat mass (VFM, 1.3 ± 0.3 kg) than the slim group, which showed 18 ± 2% body fat and 0.7 ± 0.2 kg of VFM. Additionally, the plump group showed 20% higher TC, 58% higher triglyceride (TG), and 12% lower HDL-C levels in serum. The slim group showed 34% higher apoA-I but 15% lower CETP content in serum compared to the plump group. The slim group showed a 13% increase in particle size and 1.9-fold increase in particle number with enhanced cholesterol efflux activity. Although the plump group was within a normal body mass index (BMI) range, its lipid profile and lipoprotein properties were distinctly different from those of the slim group in terms of CETP mass and activity, HDL functionality, and HDL particle size
Electric field control of nonvolatile four-state magnetization at room temperature
We find the realization of large converse magnetoelectric (ME) effects at
room temperature in a multiferroic hexaferrite
BaSrCoFeO single crystal, in which rapid
change of electric polarization in low magnetic fields (about 5 mT) is coined
to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then
reaches up to 0.62 /f.u. in an electric field of 1.14 MV/m. We find
further that four ME states induced by different ME poling exhibit unique,
nonvolatile magnetization versus electric field curves, which can be
approximately described by an effective free energy with a distinct set of ME
coefficients
SUCCESSFUL FACTORS OF 540° DWIHURYEOCHAGI IN TAEKWONDO
The purpose of our study was to provide fundamental information about success factors of 540° Dwihuryeochagi in Taekwondo. Twenty Taekwondo athletes who participated in the 2012 Taekwondo Kyukpa Wang (breaking king) championship: ten successful athletes (S, age: 23.1±1.6 yrs, height: 171.0±3.5 cm, body mass: 66.4±7.1 kg) and ten failed athletes (F, age: 22.3±1.8 yrs, height: 172.1±5.4 cm, body mass: 64.4±4.2 kg) were selected. Three-dimensional motion analysis using a system of 3 video cameras with a sampling of 60 fields/s was performed during the competition of 540 ° Dwihuryeochagi. Based on the findings, it is concluded that success factors of 540° Dwihuryeochagi were horizontal velocity of COM during P1, vertical velocity of COM during P2, and the time, kick distance, velocity and angle of lower extremities of P3-P4
Effect of intradialytic change in blood pressure and ultrafiltration volume on the variation in access flow measured by ultrasound dilution
AbstractBackgroundProspective access flow measurement is the preferred method for vascular access surveillance in hemodialysis (HD) patients. We studied the effect of intradialytic change in blood pressure and ultrafiltration volume on the variation in access flow measured by ultrasound dilution.MethodsAccess flow was measured 30minutes, 120minutes, and 240minutes after the start of HD by ultrasound dilution in 30 patients during 89 HD sessions and evaluated for variation.ResultsThe mean age of the 30 patients was 62±11 years: 19 were male. The accesses comprised 16 fistulae and 14 grafts. The mean access flow over all sessions decreased by 6.1% over time (1265±568mL/min after 30minutes, 1260±599mL/min after 120minutes, and 1197±576mL/min after 240minutes, P<0.01 by repeated measures ANOVA). In addition, a≥5% decrease in mean arterial pressure during HD significantly reduced access flow (P=0.014). However, no other variable (ultrafiltration volume, sex, age, presence of diabetes, type or location of access, body surface area, hemoglobin, serum albumin level) interacted significantly with the effect of time on access flow. Furthermore, mean arterial pressure did not correlate with ultrafiltration volume.ConclusionWe conclude that the variation in access flow during HD is relatively small. Decreased blood pressure is a risk factor for variation in access flow measured by ultrasound dilution. In most patients whose blood pressures are stable during HD, the access flow can be measured at any time during the HD treatment
- …