27 research outputs found
A 3.5-mW, 2.5-GHz diversity receiver and a 1.2-mW, 3.6-GHz VCO in silicon on anything
In this paper, first results of radio-frequency (RF) circuits processed in a novel silicon bipolar technology called silicon on anything (SOA) are presented. This technology was developed with the application of low-power, high-frequency circuits in mind. Three test ICs are discussed: a fully integrated 3.6-GHz voltage-controlled oscillator, a fully integrated 2.5-GHz diversity receiver front end, and an intermediate-frequency IC containing channel selectivity and demodulation circuits. Measurement results show that using this technology, significant power savings are possible for RF circuit
A 3.5-mW, 2.5-GHz diversity receiver and a 1.2-mW, 3.6-GHz VCO in silicon on anything
In this paper, first results of radio-frequency (RF) circuits processed in a novel silicon bipolar technology called silicon on anything (SOA) are presented. This technology was developed with the application of low-power, high-frequency circuits in mind. Three test ICs are discussed: a fully integrated 3.6-GHz voltage-controlled oscillator, a fully integrated 2.5-GHz diversity receiver front end, and an intermediate-frequency IC containing channel selectivity and demodulation circuits. Measurement results show that using this technology, significant power savings are possible for RF circuit
Transbuccal delivery of 5-Aza-2âČ-deoxycytidine: Effects of drug concentration, buffer solution, and bile salts on permeation
Delivery of 5-aza-2âČ-deoxycytidine (decitabine) across porcine buccal mucosa was evaluated as an alternative to the complex intravenous infusion regimen currently used to administer the drug. A reproducible high-performance liquid chromatography method was developed and optimized for the quantitative determination of this drug. Decitabine showed a concentration-dependent passive diffusion process across porcine buccal mucosa. An increase in the ionic strength of the phosphate buffer from 100 to 400 mM decreased the flux from 3.57±0.65 to 1.89±0.61 ÎŒg/h/cm2. Trihydroxy bile salts significantly enhanced the flux of decitabine at a 100 mM concentration (P>.05). The steady-state flux of decitabine in the presence of 100 mM of sodium taurocholate and sodium glycocholate was 52.65±9.48 and 85.22±7.61 ÎŒg/cm2/h, respectively. Two dihydroxy bile salts, sodium deoxytaurocholate and sodium deoxyglycocholate, showed better enhancement effect than did trihydroxy bile salts. A 38-fold enhancement in flux was achieved with 10 mM of sodium deoxyglycocholate
Mucoadhesive Bilayered Patches for Administration of Sumatriptan Succinate
The purpose of this study was to develop and optimize formulations of mucoadhesive bilayered buccal patches of sumatriptan succinate using chitosan as the base matrix. The patches were prepared by the solvent casting method. Gelatin and polyvinyl pyrrolidone (PVP) K30 were incorporated into the patches, to improve the film properties of the patches. The patches were found to be smooth in appearance, uniform in thickness, weight, and drug content; showed good mucoadhesive strength; and good folding endurance. A 32 full factorial design was employed to study the effect of independent variables viz. levels of chitosan and PVP K30, which significantly influenced characteristics like swelling index, in-vitro mucoadhesive strength, in vitro drug release, and in-vitro residence time. Different penetration enhancers were tried to improve the permeation of sumatriptan succinate through buccal mucosa. Formulation containing 3% dimethyl sulfoxide showed good permeation of sumatriptan succinate through mucosa. Histopathological studies revealed no buccal mucosal damage. It can be concluded that buccal route can be one of the alternatives available for administration of sumatriptan succinate