647 research outputs found

    Monte Carlo Renormalization of the 3-D Ising model: Analyticity and Convergence

    Full text link
    We review the assumptions on which the Monte Carlo renormalization technique is based, in particular the analyticity of the block spin transformations. On this basis, we select an optimized Kadanoff blocking rule in combination with the simulation of a d=3 Ising model with reduced corrections to scaling. This is achieved by including interactions with second and third neighbors. As a consequence of the improved analyticity properties, this Monte Carlo renormalization method yields a fast convergence and a high accuracy. The results for the critical exponents are y_H=2.481(1) and y_T=1.585(3).Comment: RevTeX, 4 PostScript file

    The broad differential diagnosis of encephalitis:a case report

    Get PDF
    A 31-year-old previously healthy woman presented with hallucinations and altered mental status, which was eventually found to be due to anti-N-methyl-D-aspartate receptor encephalitis. In this case report, we discuss the broad differential diagnosis of encephalitis with infectious and autoimmune causes. Furthermore, we consider empirical treatment options in case a definite diagnosis is hard to be made

    A global fit of ππ\pi\pi and πK\pi K elastic scattering in ChPT with dispersion relations

    Get PDF
    We apply the one-loop results of the SU(3)L×SU(3)RSU(3)_L\times SU(3)_R ChPT suplemented with the inverse amplitude method to fit the available experimental data on ππ\pi\pi and πK\pi K scattering. With esentially only three parameters we describe accurately data corresponding to six different channels, namely (I,J)=(0,0),(2,0),(1,1),(1/2,0),(3/2,0)(I,J)=(0,0), (2,0), (1,1), (1/2,0), (3/2,0) and (1/2,1)(1/2,1). In addition we reproduce the first resonances of the (1,1)(1,1) and (1/2,1)(1/2,1) channel with the right mass corresponding to the ρ\rho and the K(892)K^*(892) particles.Comment: 19 pages, 5 figures available on request, FT/UCM/10/9

    Proteomic analysis of Rhizoctonia solani identifies infection-specific, redox associated proteins and insight into adaptation to different plant hosts

    Get PDF
    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalises on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806

    SUE: A Special Purpose Computer for Spin Glass Models

    Full text link
    The use of last generation Programmable Electronic Components makes possible the construction of very powerful and competitive special purpose computers. We have designed, constructed and tested a three-dimensional Spin Glass model dedicated machine, which consists of 12 identical boards. Each single board can simulate 8 different systems, updating all the systems at every clock cycle. The update speed of the whole machine is 217ps/spin with 48 MHz clock frequency. A device devoted to fast random number generation has been developed and included in every board. The on-board reprogrammability permits us to change easily the lattice size, or even the update algorithm or the action. We present here a detailed description of the machine and the first runs using the Heat Bath algorithm.Comment: Submitted to Computer Physics Communications, 19 pages, 5 figures, references adde

    Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth

    Get PDF
    © 2016. Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. The data described in this article is derived from applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Comparisons of the data for sample types in this set will be useful to identify metabolic pathway changes as the fungus switches from saprophytic to a pathogenic lifestyle or pathogenicity related proteins contributing to the ability to cause disease on wheat. The data set is deposited in the PRIDE archive under identifier PRIDE: PXD002806

    Pion Mass Effects in the Large NN Limit of \chiPT

    Get PDF
    We compute the large NN effective action of the O(N+1)/O(N)O(N+1)/O(N) non-linear sigma model including the effect of the pion mass to order mπ2/fπ2m^2_{\pi}/f_{\pi}^2. This action is more complex than the one corresponding to the chiral limit not only because of the pion propagators but also because chiral symmetry produce new interactions proportional to mπ2/fπ2m^2_{\pi}/f_{\pi}^2. We renormalize the action by including the appropriate counter terms and find the renormalization group equations for the corresponding couplings. Then we estudy the unitarity propierties of the scattering amplitudes. Finally our results are applied to the particular case of the linear sigma model and also are used to fit the pion scattering phase shifts.Comment: FT/UCM/18/9
    corecore