92 research outputs found

    Effects of a higher dose of alglucosidase alfa on ventilator-free survival and motor outcome in classic infantile Pompe disease: an open-label single-center study

    Get PDF
    Background: Though enzyme-replacement therapy (ERT) with alglucosidase alfa has significantly improved the prospects for patients with classic infantile Pompe disease, some 50 % of treated infants do not survive ventilator-free beyond the age of 3 years. We investigated whether higher and more frequent dosing of alglucosidase alfa improves outcome. Methods: Eight cross-reactive immun

    Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex

    Get PDF
    The TSC1-TSC2-TBC1D7 complex is an important negative regulator of the mechanistic target of rapamycin complex 1 that controls cell growth in response to environmental cues. Inactivating TSC1 and TSC2 mutations cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterised by the occurrence of benign tumours in various organs and tissues, notably the brain, skin and kidneys. TBC1D7 mutations have not been reported in TSC patients but homozygous inactivation of TBC1D7 causes megaencephaly and intellectual disability. Here, using an exon-specific deletion strategy, we demonstrate that some regions of TSC1 are not necessary for the core function of the TSC1-TSC2 complex. Furthermore, we show that the TBC1D7 binding site is encoded by TSC1 exon 22 and identify amino acid residues involved in the TSC1-TBC1D7 interaction

    The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome

    Get PDF
    Recent studies have reported that alleles in the premutation range in the FMR1 gene in males result in increased FMR1 mRNA levels and at the same time mildly reduced FMR1 protein levels. Some elderly males with premutations exhibit an unique neurodegenerative syndrome characterized by progressive intention tremor and ataxia. We describe neurohistological, biochemical and molecular studies of the brains of mice with an expanded CGG repeat and report elevated Fmr1 mRNA levels and intranuclear inclusions with ubiquitin, Hsp40 and the 20S catalytic core complex of the proteasome as constituents. An increase was observed of both the number and the size of the inclusions during the course of life, which correlates with the progressive character of the cerebellar tremor/ataxia syndrome in humans. The observations in expanded-repeat mice support a direct role of the Fmr1 gene, by either CGG expansion per se or by mRNA level, in the formation of the inclusions and suggest a correlation between the presence of intranuclear inclusions in distinct regions of the brain and the clinical features in symptomatic premutation carriers. This mouse model will facilitate the possibilities to perform studies at the molecular level from onset of symptoms until the final stage of the disease

    High Sustained Antibody Titers in Patients with Classic Infantile Pompe Disease Following Immunomodulation at Start of Enzyme Replacement Therapy

    Get PDF
    Objective: To evaluate whether immunomodulation at start of enzyme replacement therapy induces immune tolerance to recombinant human acid alpha-glucosidase (rhGAA) in patients with classic infantile Pompe disease. Study design: Three patients (1 cross reactive immunologic material negative, 2 cross reactive immunologic material positive) were treated with 4 weekly doses of rituximab, weekly methotrexate, and monthly intravenous immunoglobulin and enzyme replacement therapy at 40 mg/kg/week. Antibody titers were measured using enzyme-linked immunosorbent assay. Neutralizing effects on rhGAA activity and cellular uptake were determined and combined with pharmacokinetic analysis. Clinical efficacy was evaluated by (ventilator-free) survival, reduction in left ventricular mass index, and improvement of motor function. Results: Immunomodulation induced B cell depletion that was accompanied by absence of antibody formation in all 3 patients. Upon cessation of rituximab treatment, all 3 patients showed B cell recovery, which was accompanied by formation of very high sustained antibody titers in 2 patients. Neutralizing effects on infused rhGAA were low to mild/moderate. All patients were alive at study end, learned to walk, and showed (near) normalization of left ventricular mass index. Conclusions: Immunomodulation as recommended in the literature prevented formation of rhGAA antibodies only during B cell depletion but failed to induce immune tolerance in 2 out of 3 patients

    Mucopolysaccharidosis type VI phenotypes-genotypes and antibody response to galsulfase

    Get PDF
    Background: Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome; MPS VI) is an autosomal recessive lysosomal storage disorder in which deficiency of N-acetylgalactosamine 4-sulfatase (arylsulfatase B; ARSB) leads to the storage of glycosaminoglycans (GAGs) in connective tissue. The genotype-phenotype correlation has been addressed in several publications but the picture is not complete. Since 2007, enzyme-replacement therapy (ERT) has been available for patients with MPS VI in the Netherlands. The purpose of our study was to learn more about the genotype-phenotype correlations in MPS VI and the antibody response to ERT with galsulfase (recombinant human arylsulfatase B). Methods. We identified ARSB mutations in 12 patients and used site-directed mutagenesis to study their effect. Antibody levels to galsulfase were measured using ELISA and a semi-quantitative immunoprecipitation method. We assessed the in vitro inhibitory effect of antibodies on galsulfase uptake and their effect on clinical outcome. Results: Five patients had a rapidly progressive phenotype and seven a slowly progressive phenotype. In total 9 pathogenic mutations were identified including 4 novel mutations (N301K, V332G, A237D, and c.1142 + 2 T > C) together composing 8 pathogenic genotypes. Most mutations appeared not to affect the synthesis of ARSB (66 kD precursor), but to hamper its maturation (43 kD ARSB). Disease severity was correlated with urinary GAG excretion. All patients developed antibodies to galsulfase within 26 weeks of treatment. It was demonstrated that these antibodies can inhibit the uptake of galsulfase in vitro. Conclusions: The clinical phenotypes and the observed defects in the biosynthesis of ARSB show that some of the mutations that we identified are clearly more severe than others. Patients receiving galsulfase as enzyme-replacement therapy can develop antibodies towards the therapeutic protein. Though most titers are modest, they can exceed a level at which they potentially affect the clinical outcome of enzyme-replacement therapy

    Variants Within TSC2 Exons 25 and 31 Are Very Unlikely to Cause Clinically Diagnosable Tuberous Sclerosis

    Get PDF
    Inactivating mutations in TSC1 and TSC2 cause tuberous sclerosis complex (TSC). The 2012 international consensus meeting on TSC diagnosis and management agreed that the identification of a pathogenic TSC1 or TSC2 variant establishes a diagnosis of TSC, even in the absence of clinical signs. However, exons 25 and 31 of TSC2 are subject to alternative splicing. No variants causing clinically diagnosed TSC have been reported in these exons, raising the possibility that such variants would not cause TSC. We present truncating and in‐frame variants in exons 25 and 31 in three individuals unlikely to fulfil TSC diagnostic criteria and examine the importance of these exons in TSC using different approaches. Amino acid conservation analysis suggests significantly less conservation in these exons compared with the majority of TSC2 exons, and TSC2 expression data demonstrates that the majority of TSC2 transcripts lack exons 25 and/or 31 in many human adult tissues. In vitro assay of both exons shows that neither exon is essential for TSC complex function. Our evidence suggests that variants in TSC2 exons 25 or 31 are very unlikely to cause classical TSC, although a role for these exons in tissue/stage specific development cannot be excluded

    PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex

    Get PDF
    Tuberous sclerosis complex (TSC) is caused by inactivating mutations in either TSC1 or TSC2 and is characterized by uncontrolled mTORC1 activation. Drugs that reduce mTOR activity are only partially successful in the treatment of TSC, suggesting that mTOR-independent pathways play a role in disease development. Here, kinome profiles of wild-type and Tsc2-/- mouse embryonic fibroblasts (MEFs) were generated, revealing a prominent role for PAK2 in signal transduction downstream of TSC1/2. Further investigation showed that the effect of the TSC1/2 complex on PAK2 is mediated through RHEB, but is independent of mTOR and p21RAC. We also demonstrated that PAK2 over-activation is likely responsible for the migratory and cell cycle abnormalities observed in Tsc2-/- MEFs. Finally, we detected high levels of PAK2 activation in giant cells in the brains of TSC patients. These results show that PAK2 is a direct effector of TSC1-TSC2-RHEB signaling and a new target for rational drug therapy in TSC
    corecore