13 research outputs found

    β-galactosidase in normal and mutant human cells

    Get PDF
    The experimental work presented in this thesis deals with the genetic and molecular basis of lysosomal Bgalactosidase deficiencies in man. The first section (II.1) deals with the characteristics of lysosomal Bgalactosidase and the second (II.2) with its major natural substrates, GM1-ganglioside and keratan sulfate, and the activator proteins. A single lysosomal B-galactosidase deficiency is the cause of the lysosomal storage diseases GM1-gangliosidosis and Morquio B syndrome. The clinical pathological and biochemical features of the different variants of these diseases are summarized in section II.3. A B-galactosidase deficiency in man also occurs as part of a multiple lysosomal enzyme deficiency. In patients with galactosialidosis there is a coexistent deficiency of lysosomal neuraminidase and lysosomal B-galactosidase, while in mucolipidosis II ("I-cell" disease) many lysosomal (enzyme) proteins, including B-galactosidase, are deficient due to a defective Man 6-P recognition marker (see Chapter I). The major features of these two diseases are summarized in section II.4. Finally, some aspects of therapy of lysosomal storage diseases and animal models are discussed in section II.S

    The monoclonal antibody ER-BMDM1 recognizes a macrophage and dendritic cell differentiation antigen with aminopeptidase activity

    Get PDF
    Abstract Here we describe the reactivity of monoclonal antibody (mAb) ER-BMDM1, directed against a 160-kDa cell membrane-associated antigen (Ag) with aminopeptidase activity. The aminopeptidase recognized by ER-BMDM1 is present on various mouse macrophage (MΦ) and dendritic cell (DC) subpopulations as well as on microvillous epithelia. Analysis of ER-BMDM1 Ag expression in in vitro models of MΦ maturation revealed that the Ag is expressed at increasing levels upon maturation of MΦ. In vivo, high level expression of the ER-BMDM1 Ag occurs after thmonocytic stage of maturation, since bone marrow cells and peripheral blood monocytes are essentially ER-BMDM1 negative. Analysis of isolated-resident and elicited MΦ populations showed that ER-BMDM1 recognizes a specific subpopulation of mature MΦ: only some resident peritoneal and alveolar MΦ are ER-BMDM1 positive, whereas virtually all thioglycollate-elicited peritoneal exudate MΦ bind the mAb. In lymphoid organs, a subpopulation of MΦ is recognized as well as interdigitating cells (IDC) located in T cell areas. Phenotypic analysis of isolated DC- the in vitro equivalents of IDC - from spleen and lymph nodes confirmed that the majority of this important antigen-presenting cell population expresses the ER-BMDM1 aminopeptidase. The molecular characteristics of the ER-BMDM1 Ag suggest that it may represent the mouse homolog of human CD13

    The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome

    Get PDF
    Recent studies have reported that alleles in the premutation range in the FMR1 gene in males result in increased FMR1 mRNA levels and at the same time mildly reduced FMR1 protein levels. Some elderly males with premutations exhibit an unique neurodegenerative syndrome characterized by progressive intention tremor and ataxia. We describe neurohistological, biochemical and molecular studies of the brains of mice with an expanded CGG repeat and report elevated Fmr1 mRNA levels and intranuclear inclusions with ubiquitin, Hsp40 and the 20S catalytic core complex of the proteasome as constituents. An increase was observed of both the number and the size of the inclusions during the course of life, which correlates with the progressive character of the cerebellar tremor/ataxia syndrome in humans. The observations in expanded-repeat mice support a direct role of the Fmr1 gene, by either CGG expansion per se or by mRNA level, in the formation of the inclusions and suggest a correlation between the presence of intranuclear inclusions in distinct regions of the brain and the clinical features in symptomatic premutation carriers. This mouse model will facilitate the possibilities to perform studies at the molecular level from onset of symptoms until the final stage of the disease

    Regulation of chloride transport in cultured normal and cystic fibrobis keratinocytes

    Get PDF
    Abstract Cultured normal (N) and cystic fibrosis (CF) keratinocytes were evaluated for their Cl−-transport properties by patch-clamp-, Ussing chamber- and isotopic efflux-measurements. Special attention was paid to a 32 pS outwardly rectifying Cl− channel which has been reported to be activated upon activation of cAMP-dependent pathways in N, but not in CF cells. This depolarization-induced Cl− channel was found with a similar incidence in N and CF apical keratininocyte membranes. However, activation of this channel in excised patches by protein kinase (PK)-A or PK-C was not successfull in either N or CF keratinocytes. Forskolin was not able to activate Cl− channels in N and CF cell-attached patches. The Ca2+-ionophore A23187 activated in cell-attached patches a linear 17 pS Cl− channel in both N and CF cells. This channel inactivated upon excision. No relationship between the cell-attached 17 pS and the excised 32 pS channel could be demonstrated. Returning to the measurement of Cl− transport at the macroscopic level, we found that a drastic rise in intracellular cAMP induced by forskolin did in N as well as CF cells not result in a change in the short-circuit current (Isc) or the fractional efflux rates of 36Cl− and 125I−. In contrast, addition of A23187 resulted in an increase of the Isc and in the isotopic anion efflux rates in N and CF cells. We conclude that Cl−-transport in cultured human keratinocytes can be activated by Ca2+, but not by cAMP-dependent pathways

    FMRP is associated to the ribosomes via RNA

    Get PDF
    The FMR1 transcript is alternatively spliced and generates different splice variants coding for FMR1 proteins (FMRP) with a predicted molecular mass of 70-80 kDa. FMRP is widely expressed and localized in the cytoplasm. To study a possible interaction with other cellular components, FMRP was isolated and characterized under non-denaturing conditions. Under physiological salt conditions FMRP appears to have a molecular mass of > 600 kDa, indicating a binding to other cellular components. This interaction is disrupted in the presence of high salt concentrations. The dissociation conditions to free FMRP from the complex are similar to the dissociation of FMRP from RNA as shown before. The binding of FMRP from the complex is also disrupted by RNAse treatment. That the association of FMRP to a high molecular weight complex possibly occurs via RNA, is further supported by the observation that the binding of FMRP, containing an lle304Asn substitution, to the high molecular weight complex is reduced. An equal reduced binding of mutated FMRP to RNA in vitro was observed before under the same conditions. The reduced binding of FMRP with the lle304Asn substitution further indicates that the interaction to the complex indeed occurs via FMRP and not via other RNA binding proteins. In a reconstitution experiment where the low molecular mass FMRP (70-80 kDa) is mixed with a reticulocyte lysate (enriched in ribosomes) it was shown that FMRP can associate to ribosomes and that this binding most likely occurs via RNA

    Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis

    Get PDF
    Lack of expression of the fragile X mental retardation protein (FMRP) results in mental retardation and macroorchidism, seen as the major pathological symptoms in fragile X patients. FMRP is a cytoplasmic RNA-binding protein which cosediments with the 60S ribosomal subunit. Recently, two proteins homologous to FMRP were discovered: FXR1 and FXR2. These novel proteins interact with FMRP and with each other and they are also associated with the 60S ribosomal subunit. Here, we studied the expression pattern of the three proteins in brain and testis by immunohistochemistry. In adult brain, FMR1, FXR1 and FXR2 proteins are coexpressed in the cytoplasm of specific differentiated neurons only. However, we observed a different expression pattern in fetal brain as well as in adult and fetal testis, suggesting independent functions for the three proteins in those tissues during embryonic development and adult life

    Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo.

    No full text
    FXR1 is one of the two known homologues of FMR1. FXR1 shares a high degree of sequence homology with FMR1 and also encodes two KH domains and an RGG domain, conferring RNA-binding capabilities. In comparison with FMRP, very little is known about the function of FXR1P in vivo. Mouse knockout (KO) models exist for both Fmr1 and Fxr2. To study the function of Fxr1 in vivo, we generated an Fxr1 KO mouse model. Homozygous Fxr1 KO neonates die shortly after birth most likely due to cardiac or respiratory failure. Histochemical analyses carried out on both skeletal and cardiac muscles show a disruption of cellular architecture and structure in E19 Fxr1 neonates compared with wild-type (WT) littermates. In WT E19 skeletal and cardiac muscles, Fxr1p is localized to the costameric regions within the muscles. In E19 Fxr1 KO littermates, in addition to the absence of Fxr1p, costameric proteins vinculin, dystrophin and alpha-actinin were found to be delocalized. A second mouse model (Fxr1 + neo), which expresses strongly reduced levels of Fxr1p relative to WT littermates, does not display the neonatal lethal phenotype seen in the Fxr1 KOs but does display a strongly reduced limb musculature and has a reduced life span of approximately 18 weeks. The results presented here point towards a role for Fxr1p in muscle mRNA transport/translation control similar to that seen for Fmrp in neuronal cells

    Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients

    Get PDF
    Mutations in the gene for the microtubule-associated protein tau are associated with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). In this study we compared the presence of the P301L mutated tau protein from brain material of patients with that of the normal 4-repeat, using polyclonal antibodies specific for the P301L point mutation and its normal counterpart. We determined the relative ratio of mutated versus normal tau protein in the sarkosyl-soluble and -insoluble protein fractions from several brain regions. Although mutated and normal tau proteins are both present in the sarkosyl-insoluble deposits, quantitative analysis showed that the mutated protein is the major component. In the sarkosyl-soluble fraction of frontal and temporal cortex the overall ratio of 3-repeat versus 4-repeat tau isoforms is unchanged but there is a dramatic depletion of mutant tau protein. Furthermore, we observed an increase in tau-immunoreactive cleavage products with the P301L antibody, suggesting that the mutant protein is partly resistant to degradation and this is confirmed by pulse-chase experiments. This is the first direct evidence using patient material that shows a selective aggregation of mutant tau protein resulting in sarkosyl-insoluble deposits and the specific depletion of mutated tau protein in the soluble fraction

    The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar-targeting signal equivalent to the HIV-1 regulatory proteins

    Get PDF
    Fragile X syndrome is caused by the absence of the fragile X mental-retardation protein (FMRP). FMRP and the fragile X-related proteins 1 and 2 (FXR1P and FXR2P) form a gene family with functional similarities, such as RNA binding, polyribosomal association and nucleocytoplasmic shuttling. In a previous study, we found that FMRP and FXR1P shuttle between cytoplasm and nucleoplasm, while FXR2P shuttles between cytoplasm and nucleolus. The nuclear and nucleolar-targeting properties of these proteins were investigated further. Here, we show that FXR2P contains in its C-terminal part, a stretch of basic amino acids 'RPQRRNRSRRRRFR' that resemble the nucleolar-targeting signal (NoS) of the viral protein Rev. This particular sequence is also present within exon 15 of the FXR1 gene. This exon undergoes alternative splicing and is therefore only present in some of the FXR1P isoforms. We investigated the intracellular distribution of various FXR1P isoforms with (iso-e and iso-f) and without (iso-d) the potential NoS in transfected COS cells treated with the nuclear export inhibitor leptomycin-B. Both iso-e and iso-f showed a nucleolar localization, as observed for FXR2P; iso-d was detected in the nucleo-plasm outside the nucleoli. Further, when a labelled 16-residue synthetic peptide corresponding to the NoS of FXR1P was added to human fibroblast cultures a clear nucleolar signal was observed. Based on these data we argue that the intranuclear distribution of FXR2P and FXR1P isoforms is very likely to be mediated by a similar NoS localized in their C-terminal region. This domain is absent in some FXR1P isoforms as well as in all FMRP isoforms, suggesting functional differences for this family of proteins, possibly related to RNA metabolism in different tissues
    corecore