49 research outputs found

    Mesenchymal stromal cells for organ transplantation: Different sources and unique characteristics?

    Get PDF
    PURPOSE OF THE REVIEW: In this review, recent findings on the effects of tissue and donor origin, culturing conditions and preconditioning regimens on the therapeutic effect of mesenchymal stem cells (MSC) in organ transplantation are discussed and the importance of understanding the characteristics of MSC for developing efficient therapy is stressed. RECENT FINDINGS: MSC research in organ transplantation is currently moving from safety-feasibility studies to efficacy studies and finding the optimal MSC for therapy is therefore highly relevant. Although sharing basic properties, there are subtle differences between MSC from different tissue sources that may affect their efficacy. Furthermore, the use of MSC from diseased organ recipients, donor or third party may affect their therapeutic effect. The importance of these differences in MSC properties may however be overshadowed by the impact of culture conditions on MSC. Culture conditions dramatically change the characteristics of MSC, and this situation can be exploited by exposing MSC to preconditioning treatment to bring about the desired properties in MSC. As MSC appear to be short-lived after infusion, the specific characteristics of MSC are mostly relevant for short-term interactions between MSC and host cells, which will subsequently take over the effects of MSC. The multiple effects of MSC are by no means unique, but the full spectrum of the effects in combination with their easy isolation and expansion make MSC a suitable cell type for therapy. SUMMARY: Tissue source, donor source and culture conditions affect the phenotypical and functional properties of MSC. The efficacy of MSC therapy will therefore depend on the source and manipulation of MSC

    Toward development of imesenchymal stem cells for immunomodulatory therapy

    Get PDF
    Mesenchymal stem cells (MSC) are under development as an immunomodulatory therapy. The anticipated immunomodulatory effects of MSC are broad, from direct inhibition of lymphocyte proliferation, induction of regulatory T and B cells, to resetting the immune system via a hit-and-run principle. There are endless flavors of MSC. Differences between MSC are originating from donors variation, differences in tissue of origin, the effects of culture conditions, and expansion time. Even standard culture conditions change the properties of MSC dramatically and generate MSC that only remotely resemble their in vivo counterparts. Adjustments in culture protocols can further emphasize properties of interest in MSC, thereby generating cells fitted for specific purposes. Culture improved immunomodulatory MSC can be designed to target particular immune disorders. In this review, we describe the observed and the desired immunomodulatory effects of MSC and propose approaches how MSC with optimal immunomodulatory properties can be developed

    Pre-Treatment of Human Mesenchymal Stem Cells with Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium

    Get PDF
    Background: Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. Hypothesis: Pre-treatment of MSCs with inflammatory factors or hypoxia will improve their migration and adhesion capacities toward OA-affected tissues. Study Design: Controlled laboratory study. Methods: We used real-time polymerase chain reaction to determine the effects of different fetal calf serum (FCS) batches, platelet lysate (PL), hypoxia, inflammatory factors, factors secreted by OA tissues, and OA synovial fluid (SF) on the expression of 12 genes encoding chemokine or adhesion receptors. Migration of MSCs toward factors secreted by OA tissues was studied in vitro, and attachment of injected MSCs was evaluated in vivo in healthy and OA knees of male Wistar rats. Results: Different FCS batches, PL, or hypoxia did not influence the expression of the migration and adhesion receptor genes. Exposure to inflammatory factors altered the expression of CCR1, CCR4, CD44, PDGFRα, and PDGFRβ. MSCs migrated toward factors secreted by OA tissues in vitro. Neither pre-treatment with inflammatory factors nor the presence of OA influenced MSC migration in vitro or adhesion in vivo. Conclusion: Factors secreted by OA tissues increase MSC migration in vitro. In vivo, no difference in MSC adhesion was found between OA and healthy knees. Pre-treatment with inflammatory factors influenced the expression of migration and adhesion receptors of MSCs but not their migration in vitro or adhesion in vivo. Clinical Relevance: To improve the therapeutic capacity of intra-articular injection of MSCs, they need to remain intra-articular for a longer period of time. Pre-treatment of MSCs with hypoxia or inflammatory factors did not increase the migration or adhesion capacity of MSCs and will therefore not likely prolong their intra-articular longevity. Alternative approaches to prolong the intra-articular presence of MSCs should be developed to increase the therapeutic effect of MSCs in OA

    Cellular therapies in organ transplantation

    Get PDF
    Cellular therapy is a promising tool for improving the outcome of organ transplantation. Various cell types with different immunoregulatory and regenerative properties may find application for specific transplant rejection or injury-related indications. The current era is crucial for the development of cellular therapies. Preclinical models have demonstrated the feasibility of efficacious cell therapy in transplantation, early clinical trials have shown safety of several of these therapies, and the first steps towards efficacy studies in humans have been made. In this review, we address the current state of the art of cellular therapies in clinical transplantation and discuss monitoring tools and endpoints for these studies

    Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling mo

    Get PDF
    Mesenchymal stem cells (MSCs) are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair

    Effect of arthritic synovial fluids on the expression of immunomodulatory factors by mesenchymal stem cells: An explorative in vitro study

    Get PDF
    Background:In diseased joints, the catabolic environment results in progressive joint damage. Mesenchymal stem cells (MSCs) can have immunomodulatory effects by secreting anti-inflammatory factors. To exert these effects, MSCs need to be triggered by proinflammatory cytokines. To explore the potential of MSCs as a treatment for diseased joints, we studied the effect of synovial fluid (SF) from donors with different joint diseases and donors without joint pathology on the immunomodulatory capacities of human MSCs in vitro. We hypothesized that SF of diseased joints influences the immunomodulatory effects of MSCs. Materials and Methods: MSCs were cultured in medium with SF of six osteoarthritis (OA) or six rheumatoid arthritis (RA) donors and three donors without joint pathology were used as control. Gene expressions of IL-6, HGF, TNFa, TGFb1, and indoleamine 2,3-dioxygenase (IDO) were analyzed. L-kynurenine concentration in conditioned medium (CM) by MSCs with SF was determined as a measure of IDO activity by MSCs. Furthermore, the effect of CM with SF on proliferation of activated lymphocytes was analyzed. Results: Addition of SF significantly up-regulated the mRNA expression of IL-6 and IDO in MSCs. SF(OA) induced significantly higher expression of IDO than SF(control), although no difference in IDO activity of the MSCs could be shown with a L-kynurenine assay. Medium conditioned by MSCs with SF(OA or RA) suppressed activated lymphocyte proliferation in vitro more than medium conditioned by MSCs without SF or with SF(control). Discussion: SF can influence the expression of genes involved in immunomodulation by MSCs and the effect on lymphocyte proliferation. We found indications for disease-specific differences between SFs but the variation between donors, even within one disease group was high. These data warrant further research to examine the potential application of MSC therapy in arthritic joints

    Pediatric mesenchymal stem cells exhibit immunomodulatory properties toward allogeneic T and B cells under inflammatory conditions

    Get PDF
    Mesenchymal stem cells from pediatric patients (pMSCs) are an attractive cell source in regenerative medicine, due to their higher proliferation rates and better differentiation abilities compared to adult MSCs (aMSCs). We have previously characterized the immunomodulatory abilities of pMSCs on T cells under co-culture. It has also been reported that aMSCs can inhibit B cell proliferation and maturation under inflammatory conditions. In this study, we therefore aimed to clarify the immunomodulatory effect of pMSCs toward T and B cells in an inflammatory microenvironment. Bone marrow derived pMSCs were primed to simulate inflammatory conditions by exposure with 50 ng/mL of IFN-γ for 3 days. To analyze the interaction between pMSCs and T cells, CD3/CD28 stimulated peripheral blood mononuclear cells (PBMCs) were co-cultured with primed or unprimed pMSCs. To investigate B cell responses, quiescent B cells obtained from spleens by CD43 negative selection were stimulated with anti-IgM, anti-CD40, IL-2, and co-cultured with either IFN-γ primed or unprimed pMSC. pMSC phenotype, B and T cell proliferation, and B cell functionality were analyzed. Gene expression of indoleamine 2,3-dioxygenease (IDO), as well as the expression of HLA-ABC, HLA-DR and the co-stimulatory molecules CD80 and CD86 was upregulated on pMSCs upon IFN-γ priming. IFN-γ did not alter the immunomodulatory abilities of pMSCs upon CD4+ nor CD8+ stimulated T cells compared to unprimed pMSCs. IFN-γ primed pMSCs but not unprimed pMSCs strongly inhibited naïve (CD19+CD27-), memory (CD19+CD27+), and total B cell proliferation. Antibody-producing plasmablast (CD19+CD27highCD38high) formation and IgG production were also significantly inhibited by IFN-γ primed pMSCs compared to unprimed pMSCs. Collectively, these results show that pMSCs have immunomodulatory effects upon the adaptive immune response which can be potentiated by inflammatory stimuli. This knowledge is useful in regenerative medicine and allogeneic transplantation applications toward tailoring pMSCs function to best modulate the immune response for a successful implant engraftment and avoidance of a strong immune reaction
    corecore