6,046 research outputs found

    TransPlanckian Particles and the Quantization of Time

    Get PDF
    Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian particles. A way to learn more about the mechanisms at work here, is to study black hole horizons, starting from the scattering matrix Ansatz. By compactifying one of the three physical spacial dimensions, the scattering matrix Ansatz can be exploited more efficiently than before. The algebra of operators on a black hole horizon allows for a few distinct representations. It is found that this horizon can be seen as being built up from string bits with unit lengths, each of which being described by a representation of the SO(2,1) Lorentz group. We then demonstrate how the holographic principle works for this case, by constructing the operators corresponding to a field in space-time. The parameter t turns out to be quantized in Planckian units, divided by the period R of the compactified dimension.Comment: 12 pages plain tex, 1 figur

    Measurement of Quantum Fluctuations in Geometry

    Full text link
    A particular form for the quantum indeterminacy of relative spacetime position of events is derived from the limits of measurement possible with Planck wavelength radiation. The indeterminacy predicts fluctuations from a classically defined geometry in the form of ``holographic noise'' whose spatial character, absolute normalization, and spectrum are predicted with no parameters. The noise has a distinctive transverse spatial shear signature, and a flat power spectral density given by the Planck time. An interferometer signal displays noise due to the uncertainty of relative positions of reflection events. The noise corresponds to an accumulation of phase offset with time that mimics a random walk of those optical elements that change the orientation of a wavefront. It only appears in measurements that compare transverse positions, and does not appear at all in purely radial position measurements. A lower bound on holographic noise follows from a covariant upper bound on gravitational entropy. The predicted holographic noise spectrum is estimated to be comparable to measured noise in the currently operating interferometer GEO600. Because of its transverse character, holographic noise is reduced relative to gravitational wave effects in other interferometer designs, such as LIGO, where beam power is much less in the beamsplitter than in the arms.Comment: 7 pages, 2 figures, LaTeX. Extensive rewrite of original version, including more detailed analysis. Main result is the same but the estimate of noise in strain units for GEO600, showing 1/f behavior at low f and flat at high f, is improved. To appear in Phys. Rev.

    Quantum Gravity as a Dissipative Deterministic System

    Get PDF
    It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in elementary particle physics that we believe that certain versions of hidden variable theories can -- and must -- be revived. A completely natural procedure is proposed, in which the dissipation of information plays an essential role. Unlike earlier attempts, it allows us to use strictly continuous and differentiable classical field theories as a starting point (although discrete variables, leading to fermionic degrees of freedom, are also welcome), and we show how an effective Hilbert space of quantum states naturally emerges when one attempts to describe the solutions statistically. Our theory removes some of the mysteries of the holographic principle; apparently non-local features are to be expected when the quantum degrees of freedom of the world are projected onto a lower-dimensional black hole horizon. Various examples and models illustrate the points we wish to make, notably a model showing that massless, non interacting neutrinos are deterministic.Comment: 20 pages plain TeX, 2 figures PostScript. Added some further explanations, and the definitions of `beable' and `changeable'. A minor error correcte

    Indeterminacy of Holographic Quantum Geometry

    Full text link
    An effective theory based on wave optics is used to describe indeterminacy of position in holographic spacetime with a UV cutoff at the Planck scale. Wavefunctions describing spacetime positions are modeled as complex disturbances of quasi-monochromatic radiation. It is shown that the product of standard deviations of two position wavefunctions in the plane of a holographic light sheet is equal to the product of their normal separation and the Planck length. For macroscopically separated positions the transverse uncertainty is much larger than the Planck length, and is predicted to be observable as a "holographic noise" in relative position with a distinctive shear spatial character, and an absolutely normalized frequency spectrum with no parameters once the fundamental wavelength is fixed from the theory of gravitational thermodynamics. The spectrum of holographic noise is estimated for the GEO600 interferometric gravitational-wave detector, and is shown to approximately account for currently unexplained noise between about 300 and 1400Hz. In a holographic world, this result directly and precisely measures the fundamental minimum interval of time.Comment: 4 pages, LaTeX. Considerably shortened from earlier version. Conclusions are unchanged. Submitted to PR

    Quantization of Point Particles in 2+1 Dimensional Gravity and Space-Time Discreteness

    Get PDF
    By investigating the canonical commutation rules for gravitating quantized particles in a 2+1 dimensional world it is found that these particles live on a space-time lattice. The space-time lattice points can be characterized by three integers. Various representations are possible, the details depending on the topology chosen for energy-momentum space. We find that an S2Ă—S1S_2\times S_1 topology yields a physically most interesting lattice within which first quantization of Dirac particles is possible. An S3S_3 topology also gives a lattice, but does not allow first quantized particles.Comment: 23 pages Plain TeX, 3 Figure

    Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity

    Get PDF
    We study the phase space structure and the quantization of a pointlike particle in 2+1 dimensional gravity. By adding boundary terms to the first order Einstein Hilbert action, and removing all redundant gauge degrees of freedom, we arrive at a reduced action for a gravitating particle in 2+1 dimensions, which is invariant under Lorentz transformations and a group of generalized translations. The momentum space of the particle turns out to be the group manifold SL(2). Its position coordinates have non-vanishing Poisson brackets, resulting in a non-commutative quantum spacetime. We use the representation theory of SL(2) to investigate its structure. We find a discretization of time, and some semi-discrete structure of space. An uncertainty relation forbids a fully localized particle. The quantum dynamics is described by a discretized Klein Gordon equation.Comment: 58 pages, 3 eps figures, presentation of the classical theory improve

    Strong to weak coupling transitions of SU(N) gauge theories in 2+1 dimensions

    Get PDF
    We investigate strong-to-weak coupling transitions in D=2+1 SU(N->oo) gauge theories, by simulating lattice theories with a Wilson plaquette action. We find that there is a strong-to-weak coupling cross-over in the lattice theory that appears to become a third-order phase transition at N=oo, in a manner that is essentially identical to the Gross-Witten transition in the D=1+1 SU(oo) lattice gauge theory. There is also evidence for a second order transition at N=oo at approximately the same coupling, which is connected with centre monopoles (instantons) and so analogues to the first order bulk transition that occurs in D=3+1 lattice gauge theories for N>4. We show that as the lattice spacing is reduced, the N=oo gauge theory on a finite 3-torus suffers a sequence of (apparently) first-order ZN symmetry breaking transitions associated with each of the tori (ordered by size). We discuss how these transitions can be understood in terms of a sequence of deconfining transitions on ever-more dimensionally reduced gauge theories.We investigate whether the trace of the Wilson loop has a non-analyticity in the coupling at some critical area, but find no evidence for this although, just as in D=1+1,the eigenvalue density of a Wilson loop forms a gap at N=oo for a critical trace. The physical implications of this are unclear.The gap formation is a special case of a remarkable similarity between the eigenvalue spectra of Wilson loops in D=1+1 and D=2+1 (and indeed D=3+1): for the same value of the trace, the eigenvalue spectra are nearly identical.This holds for finite as well as infinite N; irrespective of the Wilson loop size in lattice units; and for Polyakov as well as Wilson loops.Comment: 44 pages, 28 figures. Extensive changes and clarifications with new results on non-analyticities and eigenvalue spectra of Wilson loops. This version to be submitted for publicatio

    Two particle Quantummechanics in 2+1 Gravity using Non Commuting Coordinates

    Get PDF
    We find that the momentum conjugate to the relative distance between two gravitating particles in their center of mass frame is a hyperbolic angle. This fact strongly suggests that momentum space should be taken to be a hyperboloid. We investigate the effect of quantization on this curved momentum space. The coordinates are represented by non commuting, Hermitian operators on this hyperboloid. We also find that there is a smallest distance between the two particles of one half times the Planck length.Comment: 18 pages Latex, 2 eps figure

    Gedanken Experiments involving Black Holes

    Full text link
    Analysis of several gedanken experiments indicates that black hole complementarity cannot be ruled out on the basis of known physical principles. Experiments designed by outside observers to disprove the existence of a quantum-mechanical stretched horizon require knowledge of Planck-scale effects for their analysis. Observers who fall through the event horizon after sampling the Hawking radiation cannot discover duplicate information inside the black hole before hitting the singularity. Experiments by outside observers to detect baryon number violation will yield significant effects well outside the stretched horizon.Comment: 22 pages (including 7 figures), SU-ITP-93-1

    The Torus Universe in the Polygon Approach to 2+1-Dimensional Gravity

    Full text link
    In this paper we describe the matter-free toroidal spacetime in 't Hooft's polygon approach to 2+1-dimensional gravity (i.e. we consider the case without any particles present). Contrary to earlier results in the literature we find that it is not possible to describe the torus by just one polygon but we need at least two polygons. We also show that the constraint algebra of the polygons closes.Comment: 18 pages Latex, 13 eps-figure
    • …
    corecore