8 research outputs found

    Microstructure-based numerical modeling method for effective permittivity of ceramic/polymer composites

    Get PDF
    Effective permittivity was modeled and measured for composites that consist of up to 35vol% of titanium dioxide powder dispersed in a continuous epoxy matrix. The study demonstrates a method that enables fast and accurate numerical modeling of the effective permittivity values of ceramic/polymer composites. The model requires electrostatic Monte Carlo simulations, where randomly oriented homogeneous prism-shaped inclusions occupy random positions in the background phase. The computation cost of solving the electrostatic problem by a finite-element code is decreased by the use of an averaging method where the same simulated sample is solved three times with orthogonal field directions. This helps to minimize the artificial anisotropy that results from the pseudorandomness inherent in the limited computational domains. All the required parameters for numerical simulations are calculated from the lattice structure of titanium dioxide. The results show a very good agreement between the measured and numerically calculated effective permittivities. When the prisms are approximated by oblate spheroids with the corresponding axial ratio, a fairly good prediction for the effective permittivity of the mixture can be achieved with the use of an advanced analytical mixing formula.Peer reviewe

    Synchronous functional magnetic resonance eye imaging, video ophthalmoscopy, and eye surface imaging reveal the human brain and eye pulsation mechanisms

    No full text
    Abstract The eye possesses a paravascular solute transport pathway that is driven by physiological pulsations, resembling the brain glymphatic pathway. We developed synchronous multimodal imaging tools aimed at measuring the driving pulsations of the human eye, using an eye-tracking functional eye camera (FEC) compatible with magnetic resonance imaging (MRI) for measuring eye surface pulsations. Special optics enabled integration of the FEC with MRI-compatible video ophthalmoscopy (MRcVO) for simultaneous retinal imaging along with functional eye MRI imaging (fMREye) of the BOLD (blood oxygen level dependent) contrast. Upon optimizing the fMREye parameters, we measured the power of the physiological (vasomotor, respiratory, and cardiac) eye and brain pulsations by fast Fourier transform (FFT) power analysis. The human eye pulsated in all three physiological pulse bands, most prominently in the respiratory band. The FFT power means of physiological pulsation for two adjacent slices was significantly higher than in one-slice scans (RESP1 vs. RESP2; df = 5, p = 0.045). FEC and MRcVO confirmed the respiratory pulsations at the eye surface and retina. We conclude that in addition to the known cardiovascular pulsation, the human eye also has respiratory and vasomotor pulsation mechanisms, which are now amenable to study using non-invasive multimodal imaging of eye fluidics
    corecore