4,793 research outputs found
Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard insulator-metal transition
We use synchrotron x-ray diffraction and electrical transport under pressure
to probe both the magnetism and the structure of single crystal NiS2 across its
Mott-Hubbard transition. In the insulator, the low-temperature
antiferromagnetic order results from superexchange among correlated electrons
and couples to a (1/2, 1/2, 1/2) superlattice distortion. Applying pressure
suppresses the insulating state, but enhances the magnetism as the
superexchange increases with decreasing lattice constant. By comparing our
results under pressure to previous studies of doped crystals we show that this
dependence of the magnetism on the lattice constant is consistent for both band
broadening and band filling. In the high pressure metallic phase the lattice
symmetry is reduced from cubic to monoclinic, pointing to the primary influence
of charge correlations at the transition. There exists a wide regime of phase
separation that may be a general characteristic of correlated quantum matter.Comment: 5 pages, 3 figure
Flight to Safety: COVID-Induced Changes in the Intensity of Status Quo Preference and Voting Behavior
The relationship between anxiety and investor behavior is well known enough to warrant its own aphorism: a “flight to safety.” We posit that anxiety alters the intensity of voters’ preference for the status quo, inducing a political flight to safety toward establishment candidates. Leveraging the outbreak of the novel coronavirus during the Democratic primary election of 2020, we identify a causal effect of the outbreak on voting, with Biden benefiting between 7 and 15 percentage points at Sanders’s expense. A survey experiment in which participants exposed to an anxiety-inducing prompt choose the less disruptive hypothetical candidate provides further evidence of our theorized flight to safety among US-based respondents. Evidence from 2020 French municipal and US House primary elections suggests a COVID-induced flight to safety generalizes to benefit mainstream candidates across a variety of settings. Our findings suggest an as-yet underappreciated preference for “safe” candidates in times of anxiety
Universality and Critical Behavior at the Mott transition
We report conductivity measurements of Cr-doped V2O3 using a variable
pressure technique. The critical behavior of the conductivity near the
Mott-insulator to metal critical endpoint is investigated in detail as a
function of pressure and temperature. The critical exponents are determined, as
well as the scaling function associated with the equation of state. The
universal properties of a liquid-gas transition are found. This is potentially
a generic description of the Mott critical endpoint in correlated electron
materials.Comment: 3 figure
Zener double exchange from local valence fluctuations in magnetite
Magnetite (FeO) is a mixed valent system where electronic
conductivity occurs on the B-site (octahedral) iron sublattice of the spinel
structure. Below K, a metal-insulator transition occurs which is
argued to arise from the charge ordering of 2+ and 3+ iron valences on the
B-sites (Verwey transition). Inelastic neutron scattering measurements show
that optical spin waves propagating on the B-site sublattice (80 meV) are
shifted upwards in energy above due to the occurrence of B-B
ferromagnetic double exchange in the mixed valent metallic phase. The double
exchange interaction affects only spin waves of symmetry, not all
modes, indicating that valence fluctuations are slow and the double exchange is
constrained by electron correlations above .Comment: 4 pages, 5 figure
Agrin isoforms and their role in synaptogenesis
Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system
Modus Vivendi Beyond the Social Contract: Peace, Justice, and Survival in Realist Political Theory
This essay examines the promise of the notion of modus vivendi for realist political theory. I interpret recent theories of modus vivendi as affirming the priority of peace over justice, and explore several ways of making sense of this idea. I proceed to identify two key problems for modus vivendi theory, so conceived. Normatively speaking, it remains unclear how this approach can sustain a realist critique of Rawlsian theorizing about justice while avoiding a Hobbesian endorsement of absolutism. And conceptually, the theory remains wedded to a key feature of social contract theory: political order is conceived as based on agreement. This construes the horizontal tensions among individual or group agents in society as prior to the vertical, authoritative relations between authorities and their subjects. Political authority thereby appears from the start as a solution to societal conflict, rather than a problem in itself. I argue that this way of framing the issue abstracts from political experience. Instead I attempt to rethink the notion of modus vivendi from within the lived experience of political conflict, as oriented not primarily toward peace, but political survival. With this shift of perspective, the idea of modus vivendi shows us, pace Bernard Williams, that the “first political question” is not how to achieve order and stability, but rather: what can I live with
Chemical analysis by X-ray spectroscopy near phase transitions in the solid state
The methods discussed in this work show that the types of changes which may be observed, by precise XAS measurements of Absorbance A versus temperature, across a phase transition are: the changes in the relaxation time of the final states due to fluctuations near a phase transition; the detection of the anomalous Bragg condition coupled to phonon modes XAS enhancement that identifies the temperature interval where the phonon modes are active, the symmetry changes which introduce new allowed transitions to finite states below an element edge, near Tc indicate what symmetry changes occur, and the method of XTDAFST0 = XAFS(T) - XAFS(T0), allows the precise measurement of the progressive changes in the Debye-Waller factor versus T near a phase transition, and identify (when no other structural changes occur, except in the vibrational modes of a specific bond) the bond responsible for the transition. The methods have been applied to the superconducting transition in layer cuprates and the metal to insulator transition in NiS2-xSex
- …