209 research outputs found

    Challenging Low Homophily in Social Recommendation

    Full text link
    Social relations are leveraged to tackle the sparsity issue of user-item interaction data in recommendation under the assumption of social homophily. However, social recommendation paradigms predominantly focus on homophily based on user preferences. While social information can enhance recommendations, its alignment with user preferences is not guaranteed, thereby posing the risk of introducing informational redundancy. We empirically discover that social graphs in real recommendation data exhibit low preference-aware homophily, which limits the effect of social recommendation models. To comprehensively extract preference-aware homophily information latent in the social graph, we propose Social Heterophily-alleviating Rewiring (SHaRe), a data-centric framework for enhancing existing graph-based social recommendation models. We adopt Graph Rewiring technique to capture and add highly homophilic social relations, and cut low homophilic (or heterophilic) relations. To better refine the user representations from reliable social relations, we integrate a contrastive learning method into the training of SHaRe, aiming to calibrate the user representations for enhancing the result of Graph Rewiring. Experiments on real-world datasets show that the proposed framework not only exhibits enhanced performances across varying homophily ratios but also improves the performance of existing state-of-the-art (SOTA) social recommendation models.Comment: This paper has been accepted by The Web Conference (WWW) 202

    Augmented Tikhonov Regularization Method for Dynamic Load Identification

    Get PDF
    We introduce the augmented Tikhonov regularization method motivated by Bayesian principle to improve the load identification accuracy in seriously ill-posed problems. Firstly, the Green kernel function of a structural dynamic response is established; then, the unknown external loads are identified. In order to reduce the identification error, the augmented Tikhonov regularization method is combined with the Green kernel function. It should be also noted that we propose a novel algorithm to determine the initial values of the regularization parameters. The initial value is selected by finding a local minimum value of the slope of the residual norm. To verify the effectiveness and the accuracy of the proposed method, three experiments are performed, and then the proposed algorithm is used to reproduce the experimental results numerically. Numerical comparisons with the standard Tikhonov regularization method show the advantages of the proposed method. Furthermore, the presented results show clear advantages when dealing with ill-posedness of the problem

    Features and Prognostic Value of Quantitative Electroencephalogram Changes in Critically Ill and Non-critically Ill Anti-NMDAR Encephalitis Patients: A Pilot Study

    Get PDF
    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a common cause of encephalitis in intensive care units. Until now, no reliable method has existed for predicting the outcome of anti-NMDAR encephalitis. In this study, we used quantitative electroencephalography (qEEG) to examine the brain function of anti-NMDAR encephalitis patients and assessed its predictive value. Twenty-six patients diagnosed with anti-NMDAR encephalitis were included and grouped according to whether they were treated in intensive care units (14 critically ill vs. 12 non-critically ill). All patients underwent 2-h 10-channel qEEG recordings at the acute stage. Parameters, including amplitude-integrated electroencephalogram (aEEG), spectral edge frequency 95%, total power, power within different frequency bands (δ, θ, α, and β), and percentages of power in specific frequency bands from frontal and parietal areas were calculated with NicoletOne Software and compared between groups. The short-term outcome was death or moderate/severe disability at 3 months after onset, measured with a modified Rankin Scale, and the long-term outcome was death, disability or relapse at 12 months. No differences in qEEG parameters were observed between the critically ill and non-critically ill patients. However, differential anterior-to-posterior alterations in δ and β absolute band power were observed. Logistic regression analysis revealed that a narrower parietal aEEG bandwidth was associated with favorable long-term outcomes (odds ratio, 37.9; P = 0.044), with an optimal cutoff value of 1.7 μV and corresponding sensitivity and specificity of 90.00 and 56.25%, respectively. In a receiver operating characteristic analysis, the area under the curve was 0.7312. In conclusion, the qEEG parameters failed to reflect the clinical severity of anti-NMDAR encephalitis. However, the parietal aEEG bandwidth may separate patients with favorable and poor long-term outcomes in early stages. The underlying mechanisms require further investigation

    Fe-Ti-O based catalyst for large-chiral-angle single-walled carbon nanotube growth

    Get PDF
    International audienceCatalyst selection is very crucial for controlled growth of single-walled carbon nanotubes (SWNTs). Here we introduce a well-designed Fesingle bondTisingle bondO solid solution for SWNT growth with a high preference to large chiral angles. The Fesingle bondTisingle bondO catalyst was prepared by combining Ti layer deposition onto premade Fe nanoparticles with subsequent high-temperature air calcination, which favours the formation of a homogeneous Fesingle bondTisingle bondO solid solution. Using CO as the carbon feedstock, chemical vapour deposition growth of SWNTs at 800 °C was demonstrated on the Fesingle bondTisingle bondO catalyst. Nanobeam electron diffraction characterization on a number of individual SWNTs revealed that more than 94% of SWNTs have chiral angles larger than 15°. In situ environmental transmission electron microscopy study was carried out to reveal the catalyst dynamics upon reduction. Our results identify that the phase segregation through reducing Fesingle bondTisingle bondO catalyst leads to the formation of TiOx-supported small Fe nanoparticles for SWNT growth. The strong metal-support interactions induced by partial reduction of TiOx support promote the wettability of Fe nanoparticle, accounting for the preferential growth of large-chiral-angle SWNTs. This work opens a new avenue for chiral angle selective growth of SWNTs

    A Comparison of Co-methylation Relationships Between Rheumatoid Arthritis and Parkinson's Disease

    Get PDF
    Rheumatoid arthritis (RA) is a complex autoimmune disease. Recent studies have identified the DNA methylation loci associated with RA and found that DNA methylation was a potential mediator of genetic risk. Parkinson's disease (PD) is a common neurodegenerative disease. Several studies have indicated that DNA methylation levels are linked to PD, and genes related to the immune system are significantly enriched in PD-related methylation modules. Although recent studies have provided profound insights into the DNA methylation of both RA and PD, no shared co-methylation relationships have been identified to date. Therefore, we sought to identify shared co-methylation relationships linked to RA and PD. Here, we calculated the Pearson's correlation coefficient (PCC) of 225,239,700 gene pairs and determined the differences and similarities between the two diseases. The global co-methylation change between in PD cases and controls was larger than that between RA cases and controls. We found 337 gene pairs with large changes that were shared between RA and PD. This co-methylation relationship study represents a new area of study for both RA and PD and provides new ideas for further study of the shared biological mechanisms of RA and PD

    Amazon-M2: A Multilingual Multi-locale Shopping Session Dataset for Recommendation and Text Generation

    Full text link
    Modeling customer shopping intentions is a crucial task for e-commerce, as it directly impacts user experience and engagement. Thus, accurately understanding customer preferences is essential for providing personalized recommendations. Session-based recommendation, which utilizes customer session data to predict their next interaction, has become increasingly popular. However, existing session datasets have limitations in terms of item attributes, user diversity, and dataset scale. As a result, they cannot comprehensively capture the spectrum of user behaviors and preferences. To bridge this gap, we present the Amazon Multilingual Multi-locale Shopping Session Dataset, namely Amazon-M2. It is the first multilingual dataset consisting of millions of user sessions from six different locales, where the major languages of products are English, German, Japanese, French, Italian, and Spanish. Remarkably, the dataset can help us enhance personalization and understanding of user preferences, which can benefit various existing tasks as well as enable new tasks. To test the potential of the dataset, we introduce three tasks in this work: (1) next-product recommendation, (2) next-product recommendation with domain shifts, and (3) next-product title generation. With the above tasks, we benchmark a range of algorithms on our proposed dataset, drawing new insights for further research and practice. In addition, based on the proposed dataset and tasks, we hosted a competition in the KDD CUP 2023 and have attracted thousands of users and submissions. The winning solutions and the associated workshop can be accessed at our website https://kddcup23.github.io/.Comment: Accepted by NeurIPS 2023, Track on Datasets and Benchmarks; Dataset for KDD Cup 2023, https://kddcup23.github.io

    The epidemiological patterns of non-Hodgkin lymphoma: global estimates of disease burden, risk factors, and temporal trends

    Get PDF
    BackgroundThe incidence of non-Hodgkin’s lymphoma (NHL) has increased steadily over the past few decades. Elucidating its global burden will facilitate more effective disease management and improve patient outcomes. We explored the disease burden, risk factors, and trends in incidence and mortality in NHL globally.MethodsThe up-to-date data on age-standardized incidence and mortality rates of NHL were retrieved from the GLOBOCAN 2020, CI5 volumes I-XI, WHO mortality database, and Global Burden of Disease (GBD) 2019, focusing on geographic disparities worldwide. We reported incidence and mortality by sex and age, along with corresponding age-standardized rates (ASRs), the average annual percentage change (AAPC), and future burden estimates to 2040.ResultsIn 2020, there were an estimated 545,000 new cases and 260,000 deaths of NHL globally. In addition, NHL resulted in 8,650,352 age-standardized DALYs in 2019 worldwide. The age-specific incidence rates varied drastically across world areas, at least 10-fold in both sexes, with the most pronounced increase trend found in Australia and New Zealand. By contrast, North African countries faced a more significant mortality burden (ASR, 3.7 per 100,000) than highly developed countries. In the past decades, the pace of increase in incidence and mortality accelerated, with the highest AAPC of 4.9 (95%CI: 3.6-6.2) and 6.8 (95%CI: 4.3-9.2) in the elderly population, respectively. Considering risk factors, obesity was positively correlated with age-standardized incidence rates (P< 0.001). And North America was the high-risk region for DALYs due to the high body mass index in 2019. Regarding demographic change, NHL incident cases are projected to rise to approximately 778,000 by 2040.ConclusionIn this pooled analysis, we provided evidence for the growing incidence trends in NHL, particularly among women, older adults, obese populations, and HIV-infected people. And the marked increase in the older population is still a public health issue that requires more attention. Future efforts should be directed at cultivating health awareness and formulating effective and locally tailored cancer prevention strategies, especially in most developing countries
    corecore