2,004 research outputs found
Multiscale Analysis and Computation for the Three-Dimensional Incompressible Navier–Stokes Equations
In this paper, we perform a systematic multiscale analysis for the three-dimensional incompressible Navier–Stokes equations with multiscale initial data. There are two main ingredients in our multiscale method. The first one is that we reparameterize the initial data in the Fourier space into a formal two-scale structure. The second one is the use of a nested multiscale expansion together with a multiscale phase function to characterize the propagation of the small-scale solution dynamically. By using these two techniques and performing a systematic multiscale analysis, we derive a multiscale model which couples the dynamics of the small-scale subgrid problem to the large-scale solution without a closure assumption or unknown parameters. Furthermore, we propose an adaptive multiscale computational method which has a complexity comparable to a dynamic Smagorinsky model. We demonstrate the accuracy of the multiscale model by comparing with direct numerical simulations for both two- and three-dimensional problems. In the two-dimensional case we consider decaying turbulence, while in the three-dimensional case we consider forced turbulence. Our numerical results show that our multiscale model not only captures the energy spectrum very accurately, it can also reproduce some of the important statistical properties that have been observed in experimental studies for fully developed turbulent flows
Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach
Short-term passenger demand forecasting is of great importance to the
on-demand ride service platform, which can incentivize vacant cars moving from
over-supply regions to over-demand regions. The spatial dependences, temporal
dependences, and exogenous dependences need to be considered simultaneously,
however, which makes short-term passenger demand forecasting challenging. We
propose a novel deep learning (DL) approach, named the fusion convolutional
long short-term memory network (FCL-Net), to address these three dependences
within one end-to-end learning architecture. The model is stacked and fused by
multiple convolutional long short-term memory (LSTM) layers, standard LSTM
layers, and convolutional layers. The fusion of convolutional techniques and
the LSTM network enables the proposed DL approach to better capture the
spatio-temporal characteristics and correlations of explanatory variables. A
tailored spatially aggregated random forest is employed to rank the importance
of the explanatory variables. The ranking is then used for feature selection.
The proposed DL approach is applied to the short-term forecasting of passenger
demand under an on-demand ride service platform in Hangzhou, China.
Experimental results, validated on real-world data provided by DiDi Chuxing,
show that the FCL-Net achieves better predictive performance than traditional
approaches including both classical time-series prediction models and neural
network based algorithms (e.g., artificial neural network and LSTM). This paper
is one of the first DL studies to forecast the short-term passenger demand of
an on-demand ride service platform by examining the spatio-temporal
correlations.Comment: 39 pages, 10 figure
- …