601 research outputs found

    Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model

    Full text link
    Modeling viral dynamics in HIV/AIDS studies has resulted in a deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS290 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Gene expression analysis reveals that histone deacetylation sites may serve as partitions of chromatin gene expression domains

    Get PDF
    BACKGROUND: It has been a long-term puzzle whether chromatin can be further divided into distinct gene expression domains. Because histone deacetylation affects chromatin structure, that in turn may affect the expression of nearby genes, histone deacetylation sites may act to partition chromatin into different gene expression domains. In this article, we explore the relationship between histone deacetylation sites and gene expression patterns on the genome scale using different data sources, including microarray data measuring gene expression levels, microarray data measuring histone deacetylation sites, and information on regulatory targets of transcription factors. RESULTS: Using 269 Saccharomyces cerevisiae microarray datasets, histone deacetylation datasets, and regulatory targets of transcription factors assembled from the Yeast Proteome Database and ChIP-chip data, we found that histone deacetylation sites can reduce the level of co-expression of neighboring genes. CONCLUSION: Histone deacetylation sites may serve as possible partition sites for chromatin domains and affect gene expression
    • …
    corecore