908 research outputs found
Inner and Inter Label Propagation: Salient Object Detection in the Wild
In this paper, we propose a novel label propagation based method for saliency
detection. A key observation is that saliency in an image can be estimated by
propagating the labels extracted from the most certain background and object
regions. For most natural images, some boundary superpixels serve as the
background labels and the saliency of other superpixels are determined by
ranking their similarities to the boundary labels based on an inner propagation
scheme. For images of complex scenes, we further deploy a 3-cue-center-biased
objectness measure to pick out and propagate foreground labels. A
co-transduction algorithm is devised to fuse both boundary and objectness
labels based on an inter propagation scheme. The compactness criterion decides
whether the incorporation of objectness labels is necessary, thus greatly
enhancing computational efficiency. Results on five benchmark datasets with
pixel-wise accurate annotations show that the proposed method achieves superior
performance compared with the newest state-of-the-arts in terms of different
evaluation metrics.Comment: The full version of the TIP 2015 publicatio
- …