679 research outputs found

    Obscured Binary Quasar Cores in SDSS J104807.74+005543.5?

    Full text link
    We report the discovery of a possible close binary system of quasars in SDSS J1048+0055. The [OIII]4959,5007 emission lines are clearly double-peaked, and two discrete radio sources with a projected physical separation of ~20 pc are found in the VLBA milliarcsec resolution image at 8.4 GHz. Each of the [O III]4959,5007 doublets and Hbeta can be well modelled by two Gaussians and the line ratio, [O III]5007/Hbeta ~7, is typical of Seyfert 2 galaxies. No broad component of Hbeta was detected and its [O III]5007 luminosity, L_[OIII] ~ 9.2 times 10^42 erg s^-1, is comparable to luminous quasars and is a few ten times more luminous than typical Seyfert galaxies. One natural interpretation is that SDSS J1048+0055 contains two close quasar-like nuclei and the BLR around them are obscured. Other possible models are also discussed. We suggest that double-peaked narrow emission line profile may be an effective way of selecting candidates of binary black holes with intermediate separation

    Enhancement of Heat-Cured Cement Paste with Tannic Acid

    Get PDF
    The Improvement of Cement-Based Materials\u27 Performance by Natural Organic Compounds Can Greatly Promote the Green and Sustainable Development of the Construction Industry. However, Such Compounds Are Not Widely Used Yet Because of their Retarding Effect on Cement. in This Study, the Retardation Effect of Tannic Acid (TA, a Well-Known Retarding Compound) is overcome and the Enhancing Effect is Achieved by Adding Less Than 0.1% Content and Curing Samples in Thermal Regime. Then the Mechanism of TA Enhancing Heat-Cured Cement Pastes is Studied Systematically. Mechanical Properties Results Suggest that Addition of 0.025% TA Can Reduce the Compressive and Flexural Strengths of Cement Pastes by Up to 3.4% and 17.1% under Normal Curing Regime at 3 Days, But Enhance These Two Strengths by More Than 11.4% and 34.6% after Thermal Curing, Respectively. XRD Patterns and TGA Analysis Indicate that, under Thermal Curing Regime, 0.025% TA Can Improve the Hydration Degree of Cement Where the Bound Water Content is Increased by 21.4%. SEM Observations and MIP Results Show that TA Can Compact the Microstructure and the Porosity is Decreased by More Than 7.0%. Furthermore, FTIR Spectrums Prove that TA Can Bond with Hydration Products. Molecular Dynamics Simulation Demonstrates that TA Cross-Links with Calcium Silicate Hydrates (C–S–H) through Ionic and Hydrogen Bonds, Which Could Increase the Tensile Strength by 12.5% and the Ultimate Strain by 100%

    Conjugate Calculation of Gas Turbine Vanes Cooled with Leading Edge Films

    Get PDF
    AbstractConjugate calculation methodology is used to simulate the C3X gas turbine vanes cooled with leading edge films of “shower-head” type. By comparing calculated results of different turbulence models with the measured data, it is clear that calculation with the transition model can better simulate the flow and heat transfer in the boundary layers with leading edge film cooling. In the laminar boundary layers, on the upstream suction side, the film cooling flow presents 3D turbulent characteristics before transition, which quickly disappear on the downstream suction side owing to its intensified mixing with hot gas boundary layer after transition. On the pressure side, the film cooling flow retains the 3D turbulent characteristics all the time because the local boundary layers' consistent laminar flow retains a smooth mixing of the cooling flow and the hot gas. The temperature gradients formed between the cooled metallic vane and the hot gas can improve the stability of the boundary layer flow because the gradients possess a self stable convective structure

    Wavelet Power and Shannon Entropy Applied to Acoustic Emission Signals for Corrosion Detection and Evaluation of Reinforced Concrete

    Get PDF
    Acoustic emission (AE) signals detected from corrosion test on a steel reinforced concrete beam subjected to the coupling effects of corrosive wet-dry cycles and static load are analyzed by power spectral density, wavelet transform, and Shannon entropy. The degradation process of the corroded reinforced concrete beam can be divided into four stages on the basis of the accumulated event number (AEN). Due to the difference of material properties, steel reinforcement and concrete matrix have distinguished AE features. The time-frequency characteristics of AE signals can reflect the microstructural degradation mechanism of steel corrosion and concrete cracking. The corrosion evaluation entails investigating the evolution of the wavelet power mathematically by Shannon entropy. The frequency-entropy clearly exhibits the relative power distribution of AE signal in a certain frequency region. With the accumulation of steel corrosion and concrete deterioration, the increment of the overall entropy integration is considerably apparent. The variation of frequency-entropy curve reveals the corrosion revolution of the reinforced concrete members under static load, which is represented by a transforming from corrosion-induced micro cracking to load-induced localized cracking
    • …
    corecore