24 research outputs found

    Modeling, Control, and Optimization Technologies in Electric Drive Vehicles

    Get PDF
    To address the two urgent issues nowadays of protecting the environment and achieving energy sustainability, it is of strategic importance on a global scale to replace oil-dependent vehicles with electric drive vehicles (EDVs). Numerical simulation and optimization are essential to simulate the actual hardware and minimize the development procedure and cost. Accurate and efficient modeling, control, and optimization technologies have been the indispensable tools. EDVs have been continuously improved owing to the advancement of systematic control and power management, energy systems, batteries, and pack technologies, as well as economic and policy incentives, public awareness of energy sustainability/affordability, and environmental concerns. The primary goal of this special section is to provide timely solutions to technological and economic challenges in modeling, simulation, control, and optimization of EDVs. The accepted papers cover a range of different aspects of modeling, control, and optimization technologies for electric vehicles

    Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars

    Full text link
    3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery. Towards fine-grained control over facial attributes, recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly. Explicit methods provide fine-grained expression control but cannot handle topological changes caused by hair and accessories, while implicit ones can model varied topologies but have limited generalization caused by the unconstrained deformation fields. We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images. To achieve both deformation accuracy and topological flexibility, we propose a 3D representation called Generative Texture-Rasterized Tri-planes. The proposed representation learns Generative Neural Textures on top of parametric mesh templates and then projects them into three orthogonal-viewed feature planes through rasterization, forming a tri-plane feature representation for volume rendering. In this way, we combine both fine-grained expression control of mesh-guided explicit deformation and the flexibility of implicit volumetric representation. We further propose specific modules for modeling mouth interior which is not taken into account by 3DMM. Our method demonstrates state-of-the-art 3D-aware synthesis quality and animation ability through extensive experiments. Furthermore, serving as 3D prior, our animatable 3D representation boosts multiple applications including one-shot facial avatars and 3D-aware stylization.Comment: Project page: https://mrtornado24.github.io/Next3D

    High-efficiency 100-W Kerr-lens mode-locked Yb:YAG thin-disk oscillator

    Get PDF
    We demonstrate a Kerr-lens mode-locked femtosecond Yb:YAG thin-disk oscillator and investigate the approach to increase the optical-to-optical efficiency based on the scheme of direct multiple passes of the laser beam through the thin-disk medium. With twelve passes through the thin disk, 266-fs pulses were delivered from the oscillator with an average power of 105.6 W at a repetition rate of 20 MHz. The corresponding optical-to-optical efficiency is 31.1%, which is, to the best of our knowledge, the highest efficiency of any mode-locked thin-disk oscillator with pulse duration below 300 fs. This demonstration paves the way to even more efficient mode-locked femtosecond thin-disk oscillators, and provides an excellent laser source for the applications such as non-linear frequency conversion and high-precision industrial processing

    High-Power, Solid-State, Deep Ultraviolet Laser Generation

    No full text
    At present, deep ultraviolet (DUV) lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm) and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG) could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG). A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future

    3GHz, 257nm Picosecond Source for Electron Guns

    No full text
    We report a new photocathode laser with 3GHz repetition rate, generated by electro- optics modulator comb. The laser is amplified by an Yb: fiber amplifier to 10W and frequency converted to deep ultra-violet with output power of more than 3mW

    1

    No full text
    An anycast packet is one that should be delivered to one member in a group of designated recipients. Using anycast services may considerably simplify some applications. Little work has been done on routing anycast packets. In this paper, we propose and analyze a routing protocol for anycast message. It is composed of two sub-protocols: the routing table establishment sub-protocol and the packet forwarding sub-protocol. In the routing table establishment sub-protocol, we propose four methods (SSP, MIN-D, SBT, and CBT) for enforcing an order among routers for the purpose of loop prevention. These methods differ from each other on information used to maintain orders, the impact on QoS, and the compatibility to the existing routing protocols. In the packet forwarding subprotocol, we propose a weighted-random selection (WRS) approach for multiple path selection in order to balance network traffic. In particular, the fixed and adaptive methods are proposed to determine the weights. Both of them explicitly take into account the characteristics of distribution of anycast recipient group while the adaptive method uses the dynamic information of the anycast traffic as well. Correctness property of the protocol is formally proved. Extensive simulation is performed to evaluate our newly designed protocol. Performance data show that the loop-prevention methods and the WRS approaches have great impact on the performance in terms of average end-to-end packet delay. In particular, the protocol using the SBT or CBT loop-prevention methods and the adaptive WRS approach performs very close to a dynamic optimal routing protocol in most cases

    A Routing Protocol for Anycast Messages

    No full text
    AbstractÐAn anycast packet is one that should be delivered to one member in a group of designated recipients. Using anycast services may considerably simplify some applications. Little work has been done on routing anycast packets. In this paper, we propose and analyze a routing protocol for anycast message. It is composed of two subprotocols: the routing table establishment subprotocol and the packet forwarding subprotocol. In the routing table establishment subprotocol, we propose four methods (SSP, MIN-D, SBT, and CBT) for enforcing an order among routers for the purpose of loop prevention. These methods differ from each other on information used to maintain orders, the impact on QoS, and the compatibility to the existing routing protocols. In the packet forwarding subprotocol, we propose a Weighted-Random Selection (WRS) approach for multiple path selection in order to balance network traffic. In particular, the fixed and adaptive methods are proposed to determine the weights. Both of them explicitly take into account the characteristics of distribution of anycast recipient group while the adaptive method uses the dynamic information of the anycast traffic as well. Correctness property of the protocol is formally proven. Extensive simulation is performed to evaluate our newly designed protocol. Performance data shows that the loop-prevention methods and the WRS approaches have great impact on the performance in terms of average end-to-end packet delay. In particular, the protocol using the SBT or CBT loop-prevention methods and the adaptive WRS approach performs very close to a dynamic optimal routing protocol in most cases. Index TermsÐAnycast message, multiple path routing, shortest path first, weight assignment.

    Comparison of percutaneous vertebroplasty and conservative treatment for one level thoracolumbar osteoporotic compression fracture in a 3-year study

    No full text
    Abstract The efficacy of Mesh optimized versus standard percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures. Grid optimization (102 cases; 38 men, 64 women aged 67.3 ± 8.5) and traditional PVP groups (94 cases) were identified from 196 PVP patients treated from May 2016 to 2019. The optimal puncture site and angle forced bone cement into both groups before surgery. The main indexes were operation time, X-ray fluoroscopy times, bone cement injection volume, leakage, VAS, and injured vertebrae height. Preoperative general data were equivalent between groups (P > 0.05). All patients survived surgery without spinal cord injury, incision infection, pulmonary embolism, or death. The mesh optimization group had improved operation time (34.8 ± 6.5 min), fluoroscopy times (29.5 ± 5.5), bone cement injection volume (5.3 ± 2.1 ml), and bone cement permeability greater (3.9 percent; 4/98) than the standard PVP group (P  0.05). However, in the mesh optimization group, measurements improved to 1.8 ± 0.4 mm and (1.8 ± 0.3) mm by month three and to 1.7 ± 0.3 mm at last follow-up (P < 0.05). Mesh-optimized PVP with a mesh locator treats osteoporotic vertebral compression fractures more safely and effectively than regular PVP

    A Double-scale, Particle-filtering, Energy State Prediction Algorithm for Lithium-ion Batteries

    No full text
    In order for the battery management system (BMS) in an electric vehicle to function properly, accurate and robust indication of the energy state of the lithium-ion batteries is necessary. This robustness requires that the energy state can be estimated accurately even when the working conditions of batteries change dramatically. This paper implements battery remaining available energy prediction and state-of-charge (SOC) estimation against testing temperature uncertainties, as well as inaccurate initial SOC values. A double-scale particle filtering method has been developed to estimate or predict the system state and parameters on two different time scales. The developed method considers the slow time-varying characteristics of the battery parameter set and the quick time-varying characteristics of the battery state set. In order to select the preferred battery model, the Akaike information criterion (AIC) is used to make a tradeoff between the model prediction accuracy and complexity. To validate the developed double-scale particle filtering method, two different kinds of lithium-ion batteries were tested at three temperatures. The experimental results show that, with 20% initial SOC deviation, the maximum remaining available energy prediction and SOC estimation errors are both within 2%, even when the wrong temperature is indicated. In this case, the developed double-scale particle filtering method is expected to be robust in practice

    High-Power, Solid-State, Deep Ultraviolet Laser Generation

    No full text
    At present, deep ultraviolet (DUV) lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm) and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG) could achieve an average power of 10 W with a beam quality of M2 &lt; 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG). A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future
    corecore