2 research outputs found

    Growth and dynamic modulus of elasticity of Pinus patula × Pinus tecunumanii hybrids in Mpumalanga, South Africa

    Get PDF
    Field establishment of South Africa’s most important commercial pine species, Pinus patula, is severely hampered by the pitch canker fungus, Fusarium circinatum. Importantly, hybrids between P. patula and other pine species tolerant to the pitch canker fungus, such as P. tecunumanii and P. oocarpa, have been identified as an alternative planting stock. In this study, variation in tree volume and dynamic modulus of elasticity (MOEdym) of the P. patula × P. tecunumanii (low- and high-elevation [LE and HE] ecotypes) hybrid was compared with the P. elliottii × P. caribaea hybrid, and the pure species P. tecunumanii (LE) and P. patula. The MOEdym was assessed using the Fakkop TreeSonic microsecond instrument across three sites. The results of the study showed that P. patula × P. tecunumanii LE performed significantly better than P. patula × P. tecunumanii HE for volume and MOEdym, which in turn was significantly better than P. patula. The MOEdym and tree growth decreased with an increase in elevation. There was significant taxon × site interaction for volume and MOEdym. The results of these trials suggested that P. patula × P. tecunumanii LE is a suitable alternative to P. patula in the Sabie region of Mpumalanga in South Africa on frost-free sites, in terms of the traits that were assessed.http://www.tandfonline.com/loi/tsfs202017-12-31hb2017Plant Production and Soil Scienc

    Alternative pine hybrids and species to Pinus patula and P. radiata in South Africa and Swaziland

    No full text
    Through the collaborative efforts of companies affiliated with the International Program for Tree Improvement and Conservation (Camcore), a number of pine hybrids have been produced over the last decade. Many of these have been planted in trials across southern Africa that broadly represent winter and summer rainfall areas, with the latter ranging from warm to cold temperate sites. The five-year survival and growth of the hybrids and other pines in 12 of these trials were compared with Pinus radiata in the winter rainfall, and P. patula in the summer rainfall, regions where these species have been planted extensively. Except for the highest altitude site, where freezing conditions are common, the survival of most hybrids and tropical pines was better than P. patula or P. radiata. This was, in part, attributed to their improved tolerance to the pitch canker fungus, Fusarium circinatum, which was present in the nursery at the time of planting. In the winter rainfall area, the P. elliottii × P. caribaea hybrid, P. maximinoi and, surprisingly, the P. patula hybrids performed well. In the summer rainfall regions, hybrids with tropical parents such as P. caribaea, P. oocarpa and P. tecunumanii were more productive in the subtropical/warm temperate zone and, with increasing elevation, those hybrids crossed with P. patula performed relatively better. The P. patula × P. tecunumanii hybrid, particularly when crossed with low-elevation P. tecunumanii, performed exceptionally across most sites.Camcore, Sappi, Mondi, Mountain to Ocean Forestry (MTO) and Komatiland Forests.http://www.tandfonline.com/loi/tsfs202018-12-20hj2018Plant Production and Soil Scienc
    corecore