9 research outputs found

    Introns and Splicing Elements of Five Diverse Fungi

    No full text
    Genomic sequences and expressed sequence tag data for a diverse group of fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, Neurospora crassa, and Cryptococcus neoformans) provided the opportunity to accurately characterize conserved intronic elements. An examination of large intron data sets revealed that fungal introns in general are short, that 98% or more of them belong to the canonical splice site (ss) class (5′GU…AG3′), and that they have polypyrimidine tracts predominantly in the region between the 5′ ss and the branch point. Information content is high in the 5′ ss, branch site, and 3′ ss regions of the introns but low in the exon regions adjacent to the introns in the fungi examined. The two yeasts have broader intron length ranges and correspondingly higher intron information content than the other fungi. Generally, as intron length increases in the fungi, so does intron information content. Homologs of U2AF spliceosomal proteins were found in all species except for S. cerevisiae, suggesting a nonconventional role for U2AF in the absence of canonical polypyrimidine tracts in the majority of introns. Our observations imply that splicing in fungi may be different from that in vertebrates and may require additional proteins that interact with polypyrimidine tracts upstream of the branch point. Theoretical protein homologs for Nam8p and TIA-1, two proteins that require U-rich regions upstream of the branch point to function, were found. There appear to be sufficient differences between S. cerevisiae and S. pombe introns and the introns of two filamentous members of the Ascomycota and one member of the Basidiomycota to warrant the development of new model organisms for studying the splicing mechanisms of fungi

    Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen

    No full text
    Streptococcus mutans is the leading cause of dental caries (tooth decay) worldwide and is considered to be the most cariogenic of all of the oral streptococci. The genome of S. mutans UA159, a serotype c strain, has been completely sequenced and is composed of 2,030,936 base pairs. It contains 1,963 ORFs, 63% of which have been assigned putative functions. The genome analysis provides further insight into how S. mutans has adapted to surviving the oral environment through resource acquisition, defense against host factors, and use of gene products that maintain its niche against microbial competitors. S. mutans metabolizes a wide variety of carbohydrates via nonoxidative pathways, and all of these pathways have been identified, along with the associated transport systems whose genes account for almost 15% of the genome. Virulence genes associated with extracellular adherent glucan production, adhesins, acid tolerance, proteases, and putative hemolysins have been identified. Strain UA159 is naturally competent and contains all of the genes essential for competence and quorum sensing. Mobile genetic elements in the form of IS elements and transposons are prominent in the genome and include a previously uncharacterized conjugative transposon and a composite transposon containing genes for the synthesis of antibiotics of the gramicidin/bacitracin family; however, no bacteriophage genomes are present

    Genotype and Phenotypes of an Intestine-Adapted Escherichia coli K-12 Mutant Selected by Animal Passage for Superior Colonization ▿ †

    Get PDF
    We previously isolated a spontaneous mutant of Escherichia coli K-12, strain MG1655, following passage through the streptomycin-treated mouse intestine, that has colonization traits superior to the wild-type parent strain (M. P. Leatham et al., Infect. Immun. 73:8039–8049, 2005). This intestine-adapted strain (E. coli MG1655*) grew faster on several different carbon sources than the wild type and was nonmotile due to deletion of the flhD gene. We now report the results of several high-throughput genomic analysis approaches to further characterize E. coli MG1655*. Whole-genome pyrosequencing did not reveal any changes on its genome, aside from the deletion at the flhDC locus, that could explain the colonization advantage of E. coli MG1655*. Microarray analysis revealed modest yet significant induction of catabolic gene systems across the genome in both E. coli MG1655* and an isogenic flhD mutant constructed in the laboratory. Catabolome analysis with Biolog GN2 microplates revealed an enhanced ability of both E. coli MG1655* and the isogenic flhD mutant to oxidize a variety of carbon sources. The results show that intestine-adapted E. coli MG1655* is more fit than the wild type for intestinal colonization, because loss of FlhD results in elevated expression of genes involved in carbon and energy metabolism, resulting in more efficient carbon source utilization and a higher intestinal population. Hence, mutations that enhance metabolic efficiency confer a colonization advantage

    Differential Accumulation of Retroelements and Diversification of NB-LRR Disease Resistance Genes in Duplicated Regions following Polyploidy in the Ancestor of Soybean1[W][OA]

    No full text
    The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues

    The Medicago genome provides insight into the evolution of rhizobial symbioses

    No full text
    Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation(1). Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species(2). Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing similar to 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox

    The Medicago genome provides insight into the evolution of rhizobial symbioses

    No full text

    The tomato genome sequence provides insights into fleshy fruit evolution

    Get PDF
    Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
    corecore