39 research outputs found

    An introduction to the riometer system deployed at China-Iceland joint Arctic observatory and its beamforming correction method based on the preliminary data

    Get PDF
    The China-Iceland joint Arctic observatory (CIAO) has formally been operating since October 18, 2018, and an imaging riometer system was deployed at CIAO in August 2019 for the conjunction observation purpose with the co-located ground-based all sky imager auroral observation system. The features of the riometer and antenna system are presented. The riometer’s beam-forming performance were evaluated with the analysis method introduced in detail. The analysis results showed that the mapping of beams was incorrectly ordered, and the correction has been made. The revised ordering result was reasonably verified and the analysis method was proved to be effective

    A case study based on ground observations of the conjugate ionospheric response to interplanetary shock in polar regions

    Get PDF
    Data acquired by imaging relative ionospheric opacity meters (riometers), ionospheric total electron content (TEC) monitors, and three-wavelength auroral imagers at the conjugate Zhongshan station (ZHS) in Antarctica and Yellow River station (YRS) in the Arctic were analyzed to investigate the response of the polar ionosphere to an interplanetary shock event induced by solar flare activity on July 12, 2012. After the arrival of the interplanetary shock wave at the magnetosphere at approximately 18:10 UT, significantly enhanced auroral activity was observed by the auroral imagers at the ZHS. Additionally, the polar conjugate observation stations in both hemispheres recorded notable evolution in the two-dimensional movement of cosmic noise absorption. Comparison of the ionospheric TEC data acquired by the conjugate pair showed that the TEC at both sites increased considerably after the interplanetary shock wave arrived, although the two stations featured different sunlight conditions (polar night in July in the Antarctic region and polar day in the Arctic region). However, the high-frequency (HF) coherent radar data demonstrated that different sources might be responsible for the electron density enhancement in the ionosphere. During the Arctic polar day period in July, the increased electron density over YRS might have been caused by anti-sunward convection of the plasma irregularity, whereas in Antarctica during the polar night, the increased electron density over ZHS might have been caused by energetic particle precipitation from the magnetotail. These different physical processes might be responsible for the different responses of the ionosphere at the two conjugate stations in response to the same interplanetary shock event

    Interplanetary shock-associated aurora

    Get PDF
    Interplanetary shocks or solar wind pressure pulses have prompted impacts on Earth’s magnetospheric and ionospheric environment, especially in causing dynamic changes to the bright aurora in the polar ionosphere. The auroral phenomenon associated with shock impingements, referred to as shock aurora, exhibits distinct signatures differing from other geophysical features on the dayside polar ionosphere. Shock aurora provides a direct manifestation of the solar wind–magnetosphere–ionosphere interaction. Imagers onboard satellites can obtain the associated large-scale auroral characteristics during shock impingement on the magnetopause. Therefore, auroral data from satellites are very useful for surveying the comprehensive features of shock aurora and their general evolution. Nonetheless, the ground-based high temporal-spatial resolution all-sky imagers installed at scientific stations play an essential role in revealing medium- and small-scale characteristics of shock aurora. Here, we focus on shock aurora imaging signatures measured by imagers onboard satellites and ground-based all-sky imagers

    Extraction of auroral oval boundaries from UVI images: A new FLICM clustering-based method and its evaluation

    Get PDF
    Based on the fuzzy local information c-means (FLICM) clustering algorithm, a new method is developed for extracting the equatorward and poleward boundaries of the auroral oval from images acquired by the Ultraviolet Imager (UVI) aboard the POLAR satellite. First, the method iteratively segments the UVI image with the FLICM clustering algorithm, according to an integrity criterion for the segmented auroral oval. Then, possible gaps in the extracted auroral oval are filled, based on prior knowledge of its shape. To evaluate the method objectively, the extracted boundaries are compared with the precipitating electron boundaries determined from DMSP satellite precipitation particle data. The evaluation results demonstrate that the proposed method generates more accurate auroral boundaries than traditional methods

    Statistical characteristics of ionospheric backscatter observed by SuperDARN Zhongshan radar in Antarctica

    Get PDF
    Zhongshan HF radar, as one component of SuperDARN, has been established and in operation since April, 2010. Using data from the first two years of its operation, this paper investigates the radar’s performance, the diurnal and seasonal variations of ionospheric echoes, and their dependence on geomagnetic activity. Statistical studies show that the occurrence of echoes in different beams varies at different frequencies, which arises from the direction of the beam and the area over which the beam can achieve the orthogonality condition between the wave vector and the Earth’s magnetic field. The diurnal variation is obvious with double peak structures both in the occurrence rate and average power at 04–08 UT and 16–17 UT. The line-of-sight velocities are mainly positive on the dayside and negative on the nightside for Beam 0, which is the opposite of the trend for Beam 15. The spectral widths on the dayside are often higher than those on the nightside owing to the high energy particle precipitation in the cusp region. The seasonal variations are more obvious for those beams with larger numbers. The occurrence, the average power, the line-of-sight velocity, and the spectral widths are generally larger in the winter months than in the summer months. The influence of geomagnetic activity on radar echoes is significant. The peak echo occurrence appears on the dayside during geomagnetically quiet times, and shifts toward the nightside and exhibits an obvious decrease with increasing Kp. With increasing geomagnetic activity, the line-of-sight velocities increase, whereas the spectral widths decrease. The frequency dependence is investigated and it is found that in the operating frequency bands in 2010, 9–10 MHz is the most appropriate band for the SuperDARN Zhongshan radar

    Optical and SuperDARN radar observations of duskside shock aurora over Zhongshan Station

    Get PDF
    We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of ~14 min expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of ~8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity

    Recent progress in Chinese polar upper-atmospheric physics research: review of research advances supported by the Chinese Arctic and Antarctic expeditions

    Get PDF
    It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Antarctica, and later in the Arctic at Yellow River Station, Kjell Henriksen Observatory on Svalbard, and at the China-Iceland Joint Aurora Observatory in Iceland. In this paper, we reviewed the advances in polar upper atmosphere physics (UAP) based on the Chinese national Arctic and Antarctic research over the last five years. These included newly deployed observatories and research instruments in the Arctic and Antarctic; and new research findings, from ground-based observations, about polar ionosphere dynamics, aurora and particle precipitation, polar plasma convection, geomagnetic pulsations and space plasma waves, space weather in the polar regions, simulations of the polar ionosphere-magnetosphere. In conclusion, suggestions were made for future polar upper atmosphere physics research in China

    Simultaneous optical and radar observations of poleward moving auroral forms under different IMF conditions

    Get PDF
    Using high temporal resolution optical data obtained from three-wavelength all-sky imagers at Chinese Yellow River Station in the Arctic, together with the EISCAT Svalbard radar (ESR) and SuperDARN radars, we investigated the dayside poleward moving auroral forms (PMAFs) and the associated plasma features in the polar ionosphere under different interplanetary magnetic field (IMF) conditions, between 0900 and 1010 UT on 22 December 2003. Simultaneous optical and ESR observations revealed that all PMAFs were clearly associated with pulsed particle precipitations. During northward IMF, particles can precipitate into lower altitudes and reach the ionospheric E-region, and there is a reverse convection cell associated with these PMAFs. This cell is one of the typical signatures of the dayside high-latitude (lobe) reconnection in the polar ionosphere. These results indicate that the PMAFs were associated with the high-latitude reconnection. During southward IMF, the PMAFs show larger latitudinal motion, indicating a longer mean lifetime, and the associated ionospheric features indicate that the PMAFs were generated by the dayside low-latitude reconnection

    Chinese Antarctic Magnetometer Chain at the Cusp Latitude

    Get PDF
    A Chinese Antarctic Magnetometer (CAM) chain from Zhongshan Station (ZHS) to Dome-A (DMA) has been established since February 2009. A regular magnetometer is operated at ZHS, and four low power magnetometers are operated along the interior route from ZHS to DMA in the cusp latitude, extending over a distance of 1260 km. These stations fill an important void in the Antarctic magnetometer network. Furthermore, the CAM chain is magnetically conjugated with the Arctic region reaching from the Svalbard archipelago to Daneborg, on the east coast of Greenland. Conjugate measurements using the Arctic and Antarctic magnetometers provide excellent opportunities to investigate phenomena related to the coupling of the solar wind to the magnetosphere and ionosphere, such as magnetic impulse events, flux transfer events, traveling convection vortices and ultra-low frequency waves

    Overview of China’s Antarctic research progress 1984–2016

    Get PDF
    It is more than 30 years since the first Chinese National Antarctic Research Expedition (CHINARE) landed in Antarctica in 1984, representing China’s initiation in polar research. This review briefly summarizes the Chinese Antarctic scientific research and output accomplished over the past 30 years. The developments and progress in Antarctic research and the enhancement of international scientific cooperation achieved through the implementation of the CHINARE program have been remarkable. Since the 1980s, four permanent Chinese Antarctic research stations have been established successively and 33 CHINAREs have been completed. The research results have been derived from a series of spatiotemporal observations in association with various projects and multidisciplinary studies in the fields of oceanography, glaciology, geology, geophysics, geochemistry, atmospheric science, upper atmospheric physics, Antarctic astronomy, biology and ecology, human medicine, polar environment observation, and polar engineering
    corecore