20 research outputs found

    The difference in mean arterial pressure induced by remimazolam compared to etomidate in the presence of fentanyl at tracheal intubation: A randomized controlled trial

    Get PDF
    Background: Combined use of hypnotic and opioids during anesthesia inductions decreases blood pressure. Post-induction hypotension (PIHO) is the most common side effect of anesthesia induction. We aimed to compare the difference in mean arterial pressure (MAP) induced by remimazolam with that induced by etomidate in the presence of fentanyl at tracheal intubation.Methods: We assessed 138 adult patients with American Society of Anesthesiologists physical status I–II who underwent elective urological surgery. Patients were randomly allocated to receive either remimazolam or etomidate as alterative hypnotic in the presence of fentanyl during anesthesia induction. Comparable BIS values were achieved in both groups. The primary outcome was the difference in the MAP at tracheal intubation. The secondary outcomes included the characteristics of anesthesia, surgery, and adverse effects.Results: The MAP was higher in the etomidate group than in the remimazolam group at tracheal intubation (108 [22] mmHg vs. 83 [16] mmHg; mean difference, −26; 95% confidence interval [CI], −33 to −19; p < 0.0001). Heart rate was significantly higher in the etomidate group than in the remimazolam group at tracheal intubation. The patients’ condition warranted the administration of ephedrine more frequently in the remimazolam group (22%) than in the etomidate group (5%) (p = 0.0042) during anesthesia induction. The remimazolam group had a lower incidence of hypertension (0% vs. 9%, p = 0.0133), myoclonus (0% vs. 47%, p < 0.001), and tachycardia (16% vs. 35%, p = 0.0148), and a higher incidence of PIHO (42% vs. 5%, p = 0.001) than the etomidate group during anesthesia induction.Conclusion: Remimazolam was associated with lower MAP and lower heart rate compared to etomidate in the presence of fentanyl at tracheal intubation. Patients in the remimazolam group had a higher incidence of PIHO, and their condition warranted the administration of ephedrine more frequently than in the etomidate group during anesthesia induction

    Adaptive Robust Radar Target Detector Based on Gradient Test

    No full text
    The exact knowledge of the signal steering vector is not always known, which may result in detection performance degradation when a signal mismatch occurs. In this paper, we discuss the problem of designing a robust radar target detector in the background of Gaussian noise whose covariance matrix is unknown. To improve robustness to mismatched signals, a random perturbation that follows the complex normal distribution is added under the alternative hypothesis. Since traditional detectors that divide complex parameters into real parts and imaginary parts are sometimes difficult to obtain, a new robust, complex parameter gradient test is derived directly from the complex data. Moreover, the CFAR property of the new detector is proven. The performance assessment indicates that the gradient detector exhibits suitable robustness to the mismatched signals

    Adaptive Subspace Signal Detection in Structured Interference Plus Compound Gaussian Sea Clutter

    No full text
    This paper discusses the problem of detecting subspace signals in structured interference plus compound Gaussian sea clutter with persymmetric structure. The sea clutter is represented by a compound Gaussian process wherein the texture obeys the inverse Gaussian distribution. The structured interference lies in a known subspace, which is independent with the target signal subspace. By resorting to the two-step generalized likelihood ratio test, two-step Rao, and two-step Wald design criteria, three adaptive subspace signal detectors are proposed. Moreover, the constant false-alarm rate property of the proposed detectors is proved. The experimental results based on IPIX real sea clutter data and simulated data illustrate that the proposed detectors outperform their counterparts

    Adaptive Subspace Signal Detection in Structured Interference Plus Compound Gaussian Sea Clutter

    No full text
    This paper discusses the problem of detecting subspace signals in structured interference plus compound Gaussian sea clutter with persymmetric structure. The sea clutter is represented by a compound Gaussian process wherein the texture obeys the inverse Gaussian distribution. The structured interference lies in a known subspace, which is independent with the target signal subspace. By resorting to the two-step generalized likelihood ratio test, two-step Rao, and two-step Wald design criteria, three adaptive subspace signal detectors are proposed. Moreover, the constant false-alarm rate property of the proposed detectors is proved. The experimental results based on IPIX real sea clutter data and simulated data illustrate that the proposed detectors outperform their counterparts

    Forward-Looking Super-Resolution Imaging for Sea-Surface Target with Multi-Prior Bayesian Method

    No full text
    Traditional forward-looking super-resolution methods mainly concentrate on enhancing the resolution with ground clutter or no clutter scenes. However, sea clutter exists in the sea-surface target imaging, as well as ground clutter when the imaging scene is a seacoast.Meanwhile, restoring the contour information of the target has an important effect, for example, in the autonomous landing on a ship. This paper aims to realize the forward-looking imaging of a sea-surface target. In this paper, a multi-prior Bayesian method, which considers the environment and fuses the contour information and the sparsity of the sea-surface target, is proposed. Firstly, due to the imaging environment in which more than one kind of clutter exists, we introduce the Gaussian mixture model (GMM) as the prior information to describe the interference of the clutter and noise. Secondly, we fuse the total variation (TV) prior and Laplace prior, and propose a multi-prior to model the contour information and sparsity of the target. Third, we introduce the latent variable to simplify the logarithm likelihood function. Finally, to solve the optimal parameters, the maximum posterior-expectation maximization (MAP-EM) method is utilized. Experimental results illustrate that the multi-prior Bayesian method can enhance the azimuth resolution, and preserve the contour information of the sea-surface target

    Forward-Looking Super-Resolution Imaging for Sea-Surface Target with Multi-Prior Bayesian Method

    No full text
    Traditional forward-looking super-resolution methods mainly concentrate on enhancing the resolution with ground clutter or no clutter scenes. However, sea clutter exists in the sea-surface target imaging, as well as ground clutter when the imaging scene is a seacoast.Meanwhile, restoring the contour information of the target has an important effect, for example, in the autonomous landing on a ship. This paper aims to realize the forward-looking imaging of a sea-surface target. In this paper, a multi-prior Bayesian method, which considers the environment and fuses the contour information and the sparsity of the sea-surface target, is proposed. Firstly, due to the imaging environment in which more than one kind of clutter exists, we introduce the Gaussian mixture model (GMM) as the prior information to describe the interference of the clutter and noise. Secondly, we fuse the total variation (TV) prior and Laplace prior, and propose a multi-prior to model the contour information and sparsity of the target. Third, we introduce the latent variable to simplify the logarithm likelihood function. Finally, to solve the optimal parameters, the maximum posterior-expectation maximization (MAP-EM) method is utilized. Experimental results illustrate that the multi-prior Bayesian method can enhance the azimuth resolution, and preserve the contour information of the sea-surface target

    Knowledge-Aided Ground Moving Target Relocation for Airborne Dual-Channel Wide-Area Radar by Exploiting the Antenna Pattern Information

    No full text
    This paper addresses the problem of ground moving target relocation (GMTR) for airborne dual-channel wide-area radar systems. The monopulse technique can be utilized to perform GMTR. However, in real conditions, the GMTR performance degrades greatly due to the effect of channel mismatch. To tackle this problem, prior knowledge of the antenna pattern information is fully utilized to improve the GMTR performance, and a knowledge-aided GMTR algorithm (KA-GMTR) for airborne dual-channel wide-area radar is proposed in this paper. First, the GMTR model for the two receiving channels is analyzed. The channel mismatch model is constructed, and its expression is derived. Then, the channel mismatch phase error is well estimated by exploiting the prior antenna pattern information based on the least squares (LS) method. Meanwhile, the knowledge-aided monopulse curve (KA-MPC) is derived to perform the direction of arrival (DOA) estimation for potential targets. Finally, KA-GMTR, based on the KA-MPC, is performed to estimate the azimuth offsets and relocate the geometry positions of the potential targets when channel mismatch occurs. Moreover, the target relocation performance is analyzed, and the intrinsic reason that degrades the target relocation accuracy is figured out. The performance assessment based on airborne real-data, also in comparison to the conventional GMTR method, has demonstrated that our proposed KA-GMTR algorithm offers preferable target relocation results under channel mismatch scenarios

    Knowledge-Aided Ground Moving Target Relocation for Airborne Dual-Channel Wide-Area Radar by Exploiting the Antenna Pattern Information

    No full text
    This paper addresses the problem of ground moving target relocation (GMTR) for airborne dual-channel wide-area radar systems. The monopulse technique can be utilized to perform GMTR. However, in real conditions, the GMTR performance degrades greatly due to the effect of channel mismatch. To tackle this problem, prior knowledge of the antenna pattern information is fully utilized to improve the GMTR performance, and a knowledge-aided GMTR algorithm (KA-GMTR) for airborne dual-channel wide-area radar is proposed in this paper. First, the GMTR model for the two receiving channels is analyzed. The channel mismatch model is constructed, and its expression is derived. Then, the channel mismatch phase error is well estimated by exploiting the prior antenna pattern information based on the least squares (LS) method. Meanwhile, the knowledge-aided monopulse curve (KA-MPC) is derived to perform the direction of arrival (DOA) estimation for potential targets. Finally, KA-GMTR, based on the KA-MPC, is performed to estimate the azimuth offsets and relocate the geometry positions of the potential targets when channel mismatch occurs. Moreover, the target relocation performance is analyzed, and the intrinsic reason that degrades the target relocation accuracy is figured out. The performance assessment based on airborne real-data, also in comparison to the conventional GMTR method, has demonstrated that our proposed KA-GMTR algorithm offers preferable target relocation results under channel mismatch scenarios

    Probability Model-driven Airborne Bayesian Forward-looking Super-resolution Imaging for Multitarget Scenario

    No full text
    Forward-looking imaging is crucial in many civil and military fields, such as precision guidance, autonomous landing, and autonomous driving. The forward-looking imaging performance of airborne radar may deteriorate significantly due to the constraint of the Doppler history. The deconvolution method can be used to improve the quality of forward-looking imaging; however, it will not work well for complex imaging scenes. To solve the problem of scene sparsity measurement and characterization in complex forward-looking imaging configurations, an efficient probability model-driven airborne Bayesian forward-looking super-resolution imaging algorithm is proposed for multitarget scenarios to improve the azimuth resolution. First, the data dimension of the forward-looking imaging scene was expanded from single-frame to multiframe spaces to enhance the sparsity of the imaging scene. Then, the sparse characteristics of the imaging scene were statistically modeled using the generalized Gaussian probability model. Finally, the super-resolution imaging problem was solved using the Bayesian framework. Because the sparsity characterization parameters are embedded in the entire process of imaging, the forward-looking imaging parameters will be updated during each iteration. The effectiveness of the proposed algorithm was verified using simulation and real data
    corecore