58 research outputs found

    Imaging tools for plant nanobiotechnology

    Get PDF
    The successful application of nanobiotechnology in biomedicine has greatly changed the traditional way of diagnosis and treating of disease, and is promising for revolutionizing the traditional plant nanobiotechnology. Over the past few years, nanobiotechnology has increasingly expanded into plant research area. Nanomaterials can be designed as vectors for targeted delivery and controlled release of fertilizers, pesticides, herbicides, nucleotides, proteins, etc. Interestingly, nanomaterials with unique physical and chemical properties can directly affect plant growth and development; improve plant resistance to disease and stress; design as sensors in plant biology; and even be used for plant genetic engineering. Similarly, there have been concerns about the potential biological toxicity of nanomaterials. Selecting appropriate characterization methods will help understand how nanomaterials interact with plants and promote advances in plant nanobiotechnology. However, there are relatively few reviews of tools for characterizing nanomaterials in plant nanobiotechnology. In this review, we present relevant imaging tools that have been used in plant nanobiotechnology to monitor nanomaterial migration, interaction with and internalization into plants at three-dimensional lengths. Including: 1) Migration of nanomaterial into plant organs 2) Penetration of nanomaterial into plant tissues (iii)Internalization of nanomaterials by plant cells and interactions with plant subcellular structures. We compare the advantages and disadvantages of current characterization tools and propose future optimal characterization methods for plant nanobiotechnology

    COMPOSER: Compositional Reasoning of Group Activity in Videos with Keypoint-Only Modality

    Full text link
    Group Activity Recognition detects the activity collectively performed by a group of actors, which requires compositional reasoning of actors and objects. We approach the task by modeling the video as tokens that represent the multi-scale semantic concepts in the video. We propose COMPOSER, a Multiscale Transformer based architecture that performs attention-based reasoning over tokens at each scale and learns group activity compositionally. In addition, prior works suffer from scene biases with privacy and ethical concerns. We only use the keypoint modality which reduces scene biases and prevents acquiring detailed visual data that may contain private or biased information of users. We improve the multiscale representations in COMPOSER by clustering the intermediate scale representations, while maintaining consistent cluster assignments between scales. Finally, we use techniques such as auxiliary prediction and data augmentations tailored to the keypoint signals to aid model training. We demonstrate the model's strength and interpretability on two widely-used datasets (Volleyball and Collective Activity). COMPOSER achieves up to +5.4% improvement with just the keypoint modality. Code is available at https://github.com/hongluzhou/composerComment: ECCV 202

    Memorials

    No full text

    A New PV Array Fault Diagnosis Method Using Fuzzy C-Mean Clustering and Fuzzy Membership Algorithm

    No full text
    Photovoltaic (PV) power station faults in the natural environment mainly occur in the PV array, and the accurate fault diagnosis is of particular significance for the safe and efficient PV power plant operation. The PV array’s electrical behavior characteristics under fault conditions is analyzed in this paper, and a novel PV array fault diagnosis method is proposed based on fuzzy C-mean (FCM) and fuzzy membership algorithms. Firstly, clustering analysis of PV array fault samples is conducted using the FCM algorithm, indicating that there is a fixed relationship between the distribution characteristics of cluster centers and the different fault, then the fault samples are classified effectively. The membership degrees of all fault data and cluster centers are then determined by the fuzzy membership algorithm for the final fault diagnosis. Simulation analysis indicated that the diagnostic accuracy of the proposed method was 96%. Field experiments further verified the correctness and effectiveness of the proposed method. In this paper, various types of fault distribution features are effectively identified by the FCM algorithm, whether the PV array operation parameters belong to the fault category is determined by fuzzy membership algorithm, and the advantage of the proposed method is it can classify the fault data from normal operating data without foreknowledge

    Chitin Biodegradation by Lytic Polysaccharide Monooxygenases from Streptomyces coelicolor In Vitro and In Vivo

    No full text
    Lytic polysaccharide monooxygenases (LPMOs) have the potential to improve recalcitrant polysaccharide hydrolysis by the oxidizing cleavage of glycosidic bond. Streptomyces species are major chitin decomposers in soil ecological environments and encode multiple lpmo genes. In this study, we demonstrated that transcription of the lpmo gene, Sclpmo10G, in the Streptomyces coelicolor A3(2) (ScA3(2)) strain is strongly induced by chitin. The ScLPMO10G protein was further expressed in Escherichia coli and characterized in vitro. The ScLPMO10G protein showed oxidation activity towards chitin. Chitinase synergy experiments demonstrated that the addition of ScLPMO10G resulted in a substantial in vitro increase in the reducing sugar levels. Moreover, in vivo the LPMO-overexpressing strain ScΔLPMO10G(+) showed stronger chitin-degrading ability than the wild-type, leading to a 2.97-fold increase in reducing sugar level following chitin degradation. The total chitinase activity of ScΔLPMO10G(+) was 1.5-fold higher than that of ScA3(2). In summary, ScLPMO10G may play a role in chitin biodegradation in S. coelicolor, which could have potential applications in biorefineries

    Progesterone receptor-mediated regulation of N-acetylneuraminate pyruvate lyase (NPL) in mouse uterine luminal epithelium and nonessential role of NPL in uterine function.

    Get PDF
    N-acetylneuraminate pyruvate lyase (NPL) catalyzes N-acetylneuraminic acid, the predominant sialic acid. Microarray analysis of the periimplantation mouse uterine luminal epithelium (LE) revealed Npl being the most downregulated (35×) gene in the LE upon embryo implantation. In natural pregnant mouse uterus, Npl expression increased 56× from gestation day 0.5 (D0.5) to D2.5. In ovariectomized mouse uterus, Npl was significantly upregulated by progesterone (P4) but downregulated by 17β-estradiol (E2). Progesterone receptor (PR) antagonist RU486 blocked the upregulation of Npl in both preimplantation uterus and P4-treated ovariectomized uterus. Npl was specifically localized in the preimplantation D2.5 and D3.5 uterine LE. Since LE is essential for establishing uterine receptivity, it was hypothesized that NPL might play a critical role in uterine function, especially during embryo implantation. This hypothesis was tested in the Npl ((-/-)) mice. No significant differences were observed in the numbers of implantation sites on D4.5, gestation periods, litter sizes, and postnatal offspring growth between wild type (WT) and Npl ((-/-)) females from mating with WT males. Npl ((-/-))xNpl ((-/-)) crosses produced comparable little sizes as that from WTxWT crosses. Comparable mRNA expression levels of several genes involved in sialic acid metabolism were observed in D3.5 uterus and uterine LE between WT and Npl ((-/-)), indicating no compensatory upregulation in the D3.5 Npl ((-/-)) uterus and LE. This study demonstrates PR-mediated dynamic expression of Npl in the periimplantation uterus and dispensable role of Npl in uterine function and embryo development

    Distinct spatiotemporal expression of serine proteases Prss23 and Prss35 in periimplantation mouse uterus and dispensable function of Prss35 in fertility.

    Get PDF
    PRSS23 and PRSS35 are homologous proteases originally identified in mouse ovaries. In the periimplantation mouse uterus, Prss23 was highly expressed in the preimplantation gestation day 3.5 (D3.5) uterine luminal epithelium (LE). It disappeared from the postimplantation LE and reappeared in the stromal compartment next to the myometrium on D6.5. It was undetectable in the embryo from D4.5 to D6.5 but highly expressed in the embryo on D7.5. Prss35 became detectable in the uterine stromal compartment surrounding the embryo on D4.5 and shifted towards the mesometrial side of the stromal compartment next to the embryo from D5.5 to D7.5. In the ovariectomized uterus, Prss23 was moderately and Prss35 was dramatically downregulated by progesterone and 17β-estradiol. Based on the expression of Prss35 in granulosa cells and corpus luteum of the ovary and the early pregnant uterus, we hypothesized that PRSS35 might play a role in female reproduction, especially in oocyte development, ovulation, implantation, and decidualization. This hypothesis was tested in Prss35((-/-)) mice, which proved otherwise. Between wild type (WT) and Prss35((-/-)) mice, superovulation of immature females produced comparable numbers of cumulus-oocyte complexes; there were comparable numbers of implantation sites detected on D4.5 and D7.5; there were no obvious differences in the expression of implantation and decidualization marker genes in D4.5 or D7.5 uteri. Comparable mRNA expression levels of a few known protease-related genes in the WT and Prss35((-/-)) D4.5 uteri indicated no compensatory upregulation. Comparable litter sizes from WT × WT and Prss35((-/-))× Prss35((-/-)) crosses suggested that Prss35 gene was unessential for fertility and embryo development. Prss35 gene has been linked to cleft lip/palate in humans. However, no obvious such defects were observed in Prss35((-/-)) mice. This study demonstrates the distinct expression of Prss23 and Prss35 in the periimplantation uterus and the dispensable role of Prss35 in fertility and embryo development
    • …
    corecore