36 research outputs found

    Antarctic Basal Water Storage Variation Inferred from Multi-Source Satellite Observation and Relevant Models

    No full text
    Antarctic basal water storage variation (BWSV) refers to mass changes of basal water beneath the Antarctic ice sheet (AIS). Identifying these variations is critical for understanding Antarctic basal hydrology variations and basal heat conduction, yet they are rarely accessible due to a lack of direct observation. This paper proposes a layered gravity density forward/inversion iteration method to investigate Antarctic BWSV based on multi-source satellite observations and relevant models. During 2003–2009, BWSV increased at an average rate of 43 ± 23 Gt/yr, which accounts for 29% of the previously documented total mass loss rate (−76 ± 20 Gt/yr) of AIS. Major uncertainty arises from satellite gravimetry, satellite altimetry, the glacial isostatic adjustment (GIA) model, and the modelled basal melting rate. We find that increases in basal water mainly occurred in regions with widespread active subglacial lakes, such as the Rockefeller Plateau, Siple Coast, Institute Ice Stream regions, and marginal regions of East Antarctic Ice Sheet (EAIS), which indicates the increased water storage in these active subglacial lakes, despite the frequent water drainage events. The Amundsen Sea coast experienced a significant loss during the same period, which is attributed to the basal meltwater discharging into the Amundsen Sea through basal channels

    Increased Expression of CCN2 in the Red Flashing Light-Induced Myopia in Guinea Pigs

    No full text
    Visual environment plays an important role in the occurrence of myopia. We previously showed that the different flashing lights could result in distinct effects on the ocular growth and development of myopia. CCN2 has been reported to regulate various cellular functions and biological processes. However, whether CCN2 signaling was involved in the red flashing light-induced myopia still remains unknown. In the present study, we investigated the effects of the red flashing lights exposure on the refraction and axial length of the eyes in vivo and then evaluated their effects on the expression of CCN2 and TGF-β in sclera tissues. Our data showed that the eyes exposed to the red flashing light became more myopic with a significant increase of the axial length and decrease of the refraction. Both CCN2 and TGF-β, as well as p38 MAPK and PI3K, were highly expressed in the sclera tissues exposed to the red flashing light. Both CCN2 and TGF-β were found to have the same gene expression profile in vivo. In conclusion, our findings found that CCN2 signaling pathway plays an important role in the red flashing light-induced myopia in vivo. Moreover, our study establishes a useful animal model for experimental myopia research

    Antarctic Basal Water Storage Variation Inferred from Multi-Source Satellite Observation and Relevant Models

    No full text
    Antarctic basal water storage variation (BWSV) refers to mass changes of basal water beneath the Antarctic ice sheet (AIS). Identifying these variations is critical for understanding Antarctic basal hydrology variations and basal heat conduction, yet they are rarely accessible due to a lack of direct observation. This paper proposes a layered gravity density forward/inversion iteration method to investigate Antarctic BWSV based on multi-source satellite observations and relevant models. During 2003–2009, BWSV increased at an average rate of 43 ± 23 Gt/yr, which accounts for 29% of the previously documented total mass loss rate (−76 ± 20 Gt/yr) of AIS. Major uncertainty arises from satellite gravimetry, satellite altimetry, the glacial isostatic adjustment (GIA) model, and the modelled basal melting rate. We find that increases in basal water mainly occurred in regions with widespread active subglacial lakes, such as the Rockefeller Plateau, Siple Coast, Institute Ice Stream regions, and marginal regions of East Antarctic Ice Sheet (EAIS), which indicates the increased water storage in these active subglacial lakes, despite the frequent water drainage events. The Amundsen Sea coast experienced a significant loss during the same period, which is attributed to the basal meltwater discharging into the Amundsen Sea through basal channels

    Rapid Prediction of Retired Ni-MH Batteries Capacity Based on Reliable Multi-Parameter Driven Analysis

    No full text
    In order to solve the problems of long-time consumption and high energy consumption in existing capacity detection methods of retired Ni-MH batteries, a fast and reliable capacity prediction method for retired Ni-MH batteries by multi-parameter driven analysis was proposed in this paper. This method mainly obtains several parameters through short-time measurement and pulse rapid nondestructive testing. Then, Pearson correlation coefficient and KS-test were used to analyze the correlation between the two parameters and verify the same distribution. Finally, SVR was used to predict the battery discharge capacity. The results show that the volume expansion thickness difference Δd, AC internal resistance R, terminal voltage U of the battery, charge and discharge polarization internal resistance Rf1 and Rf2 and pulse charging power P2 of the battery are strongly negatively correlated with the discharge capacity, and these characteristic parameters can effectively and reliably reflect the internal structural characteristics of the battery. Additionally, the mean relative error of the established capacity model is 5.87%, and the lowest error is 1.32%. The prediction effect is good, which provides a certain reference value for the subsequent consistent sorting method

    Analysis of transconductance characteristic of AlGaN/GaN HEMTs with graded AlGaN layer

    No full text
    A theoretical study of transconductance characteristics (gm − Vgs profile) of AlGaN/GaN high electron mobility transistors (HEMTs) with a graded AlGaN layer is given in this paper. The calculations were made using a self-consistent solution of the Schrödinger-Poisson equations and an AlGaN/GaN HEMTs numerical device model. Transconductance characteristics of the devices are discussed while the thickness and Al composition of the graded AlGaN layer are optimized. It is found that graded AlGaN layer structure can tailor device’s gm − Vgs profile by improving polar optical phonon mobility and interface roughness mobility. Good agreement is obtained between the theoretical calculations and experimental measurements over the full range of applied gate bias

    High performance AlGaNGaN power switch with Si3N4 Insulation

    No full text
    We report the fabrication of AlGaN/GaN high electron mobility transistors (MIS-HEMTs) with a high breakdown voltage by employing a metal-insulator-semiconductor (MIS) gate structure using Si3N4 insulator. The Si3N4 films were deposited by plasma enhanced chemical vapor deposition (PECVD) as the surface passivation, interlayer films and the gate dielectric. In comparison with Schottky-gate HEMTs, the gate leakage currents of MIS-HEMTs exhibited three orders of magnitude reduction. With similar device structures, the off-state breakdown voltage of MIS-HEMTs was 1050 V with a specific on-resistance of 4.0 mΩ cm2, whereas the breakdown voltage and specific on-resistance of SG-HEMTs were 740 V and 4.4 mΩ cm2, respectively. In addition, the MIS-HEMTs exhibited little current slump in the pulsed measurements and possessed faster switch speed than Si MOSFET. We demonstrate that AlGaN/GaN MIS-HEMTs are promising not only for microwave applications but also for high power switching applications

    De novo assembly and comparison of the ovarian transcriptomes of the common Chinese cuttlefish (Sepiella japonica) with different gonadal development

    No full text
    The common Chinese cuttlefish (Sepiella japonica) has been considered one of the most economically important marine Cephalopod species in East Asia and seed breeding technology has been established for massive aquaculture and stock enhancement. In the present study, we used Illumina HiSeq2000 to sequence, assemble and annotate the transcriptome of the ovary tissues of S. japonica for the first time. A total of 53,116,650 and 53,446,640 reads were obtained from the immature and matured ovaries, respectively (NCBI SRA database SRX1409472 and SRX1409473), and 70,039 contigs (N50 = 1443 bp) were obtained after de novo assembling with Trinity software. Digital gene expression analysis reveals 47,288 contigs show differential expression profile and 793 contigs are highly expressed in the immature ovary, while 38 contigs are highly expressed in the mature ovary with FPKM >100. We hope that the ovarian transcriptome and those stage-enriched transcripts of S. japonica can provide some insight into the understanding of genome-wide transcriptome profile of cuttlefish gonad tissue and give useful information in cuttlefish gonad development. Keywords: Cuttlefish, Gonad development, Transcriptom

    Synthesis of an emerging morpholine-typed Gemini surfactant and its application in reverse flotation carnallite ore for production of potash fertilizer at low temperature

    No full text
    Carnallite is a kind of high-quality source of raw material for the production of potash fertilizer (KCl) in industry. However, how to produce potash fertilizer sustainably at low temperature has always been a problem. In this work, we synthesized an emerging morpholine-typed Gemini surfactant, butanediyl-α, ω-bis (morpholino dodeculammonium bromide) (BM), which can be used to collect NaCl in reverse flotation carnallite ores in a low-temperature environment. We compared its ability to collect NaCl and carnallite with the monomeric surfactant 4-laurylmorpholine (LM) at low temperatures. The flotation test results indicated that BM has a stronger collecting ability for NaCl than that of conventional LM collector. At room temperature (25 °C), BM exhibits a forceful collecting function to NaCl and preeminent selectivity for carnallite. The recovery of NaCl ran up to 98.0% when the concentration of BM was 1 × 10 mol/L. Under the same condition, the flotation recovery using LM was only 39.0%. The recoveries of carnallite of the two were not more than 3.5%. When the environment temperature descended, the effect of BM for NaCl exhibited a stronger stable trend. The recovery with BM as a collector raised notably from 68.0% to 96.5% with temperature ranging from 0 °C to 15 °C. However, in the same scope of dosage and temperature, the recovery with LM collector only raised from 3.5% to 31.5%. At 0 °C, LM lost the vast majority of its collector performance, while BM still showed high performance
    corecore