861 research outputs found

    Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

    Full text link
    Let GG be a graph and S\mathcal {S} be a subset of ZZ. A vertex-coloring S\mathcal {S}-edge-weighting of GG is an assignment of weight ss by the elements of S\mathcal {S} to each edge of GG so that adjacent vertices have different sums of incident edges weights. It was proved that every 3-connected bipartite graph admits a vertex-coloring {1,2}\{1,2\}-edge-weighting (Lu, Yu and Zhang, (2011) \cite{LYZ}). In this paper, we show that the following result: if a 3-edge-connected bipartite graph GG with minimum degree Ξ΄\delta contains a vertex u∈V(G)u\in V(G) such that dG(u)=Ξ΄d_G(u)=\delta and Gβˆ’uG-u is connected, then GG admits a vertex-coloring S\mathcal {S}-edge-weighting for S∈{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. In particular, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S\mathcal {S}-edge-weighting for S∈{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. The bound is sharp, since there exists a family of infinite bipartite graphs which are 2-connected and do not admit vertex-coloring {1,2}\{1,2\}-edge-weightings or vertex-coloring {0,1}\{0,1\}-edge-weightings.Comment: In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S-edge-weighting for S\in {{0,1},{1,2}
    • …
    corecore