336 research outputs found

    The fundamental gap of a kind of two dimensional sub-elliptic operator

    Full text link
    This paper is concerned at the minimization fundamental gap problem for a class of two-dimensional degenerate sub-elliptic operators. We establish existence results for weak solutions, Sobolev embedding theorem and spectral theory of sub-elliptic operators. We provide the existence and characterization theorems for extremizing potentials V(x)V(x) when V(x)V(x) is subject to L∞L^\infty norm constraint

    Some controllability results of a class of N-dimensional parabolic equations with internal single-point degeneracy

    Full text link
    This paper investigates the controllability of a class of NN-dimensional degenerate parabolic equations with interior single-point degeneracy. We employ the Galerkin method to prove the existence of solutions for the equations. The analysis is then divided into two cases based on whether the degenerate point x=0x=0 lies within the control region ω0\omega_0 or not. For each case, we establish specific Carleman estimates. As a result, we achieve null controllability in the first case 0∈ω00\in\omega_0 and unique continuation and approximate controllability in the second case 0∉ω00\notin\omega_0

    Efficient Semi-Supervised Federated Learning for Heterogeneous Participants

    Full text link
    Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data. However, training and deploying large-scale models on resource-constrained clients is challenging. Fortunately, Split Federated Learning (SFL) offers a feasible solution by alleviating the computation and/or communication burden on clients. However, existing SFL works often assume sufficient labeled data on clients, which is usually impractical. Besides, data non-IIDness across clients poses another challenge to ensure efficient model training. To our best knowledge, the above two issues have not been simultaneously addressed in SFL. Herein, we propose a novel Semi-SFL system, which incorporates clustering regularization to perform SFL under the more practical scenario with unlabeled and non-IID client data. Moreover, our theoretical and experimental investigations into model convergence reveal that the inconsistent training processes on labeled and unlabeled data have an influence on the effectiveness of clustering regularization. To this end, we develop a control algorithm for dynamically adjusting the global updating frequency, so as to mitigate the training inconsistency and improve training performance. Extensive experiments on benchmark models and datasets show that our system provides a 3.0x speed-up in training time and reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.1% improvement in accuracy under non-IID scenarios compared to the state-of-the-art baselines.Comment: 16 pages, 12 figures, conferenc

    Nonlinear vibrations of beams with spring and damping delayed feedback control

    Get PDF
    The primary, subharmonic, and superharmonic resonances of an Euler–Bernoulli beam subjected to harmonic excitations are studied with damping and spring delayed-feedback controllers. By method of multiple scales, the non-linear governing partial differential equation is transformed into linear differential equations directly. Effects of the feedback gains and time-delays on the steady state responses are investigated. The velocity and displacement delayed-feedback controllers are employed to suppress the primary and superharmonic resonances of the forced nonlinear oscillator. The stable vibration regions of the feedback gains and time-delays are worked out based on stablility conditions of the resonances. It is found that proper selection of feedback gains and time-delays can enhance the control performance of beam’s nonlinear vibration. Position of the bifurcation point can be changed or the bifurcation can be eliminated
    • …
    corecore