27 research outputs found

    Penalty-Based Imitation Learning With Cross Semantics Generation Sensor Fusion for Autonomous Driving

    Full text link
    In recent times, there has been a growing focus on end-to-end autonomous driving technologies. This technology involves the replacement of the entire driving pipeline with a single neural network, which has a simpler structure and faster inference time. However, while this approach reduces the number of components in the driving pipeline, it also presents challenges related to interpretability and safety. For instance, the trained policy may not always comply with traffic rules, and it is difficult to determine the reason for such misbehavior due to the lack of intermediate outputs. Additionally, the successful implementation of autonomous driving technology heavily depends on the reliable and expedient processing of sensory data to accurately perceive the surrounding environment. In this paper, we provide penalty-based imitation learning approach combined with cross semantics generation sensor fusion technologies (P-CSG) to efficiently integrate multiple modalities of information and enable the autonomous agent to effectively adhere to traffic regulations. Our model undergoes evaluation within the Town 05 Long benchmark, where we observe a remarkable increase in the driving score by more than 12% when compared to the state-of-the-art (SOTA) model, InterFuser. Notably, our model achieves this performance enhancement while achieving a 7-fold increase in inference speed and reducing the model size by approximately 30%. For more detailed information, including code-based resources, they can be found at https://hk-zh.github.io/p-csg

    What Matters to Enhance Traffic Rule Compliance of Imitation Learning for Automated Driving

    Full text link
    More research attention has recently been given to end-to-end autonomous driving technologies where the entire driving pipeline is replaced with a single neural network because of its simpler structure and faster inference time. Despite this appealing approach largely reducing the components in driving pipeline, its simplicity also leads to interpretability problems and safety issues arXiv:2003.06404. The trained policy is not always compliant with the traffic rules and it is also hard to discover the reason for the misbehavior because of the lack of intermediate outputs. Meanwhile, Sensors are also critical to autonomous driving's security and feasibility to perceive the surrounding environment under complex driving scenarios. In this paper, we proposed P-CSG, a novel penalty-based imitation learning approach with cross semantics generation sensor fusion technologies to increase the overall performance of End-to-End Autonomous Driving. We conducted an assessment of our model's performance using the Town 05 Long benchmark, achieving an impressive driving score improvement of over 15%. Furthermore, we conducted robustness evaluations against adversarial attacks like FGSM and Dot attacks, revealing a substantial increase in robustness compared to baseline models.More detailed information, such as code-based resources, ablation studies and videos can be found at https://hk-zh.github.io/p-csg-plus.Comment: 8 pages, 2 figure

    Language-Conditioned Imitation Learning with Base Skill Priors under Unstructured Data

    Full text link
    The growing interest in language-conditioned robot manipulation aims to develop robots capable of understanding and executing complex tasks, with the objective of enabling robots to interpret language commands and manipulate objects accordingly. While language-conditioned approaches demonstrate impressive capabilities for addressing tasks in familiar environments, they encounter limitations in adapting to unfamiliar environment settings. In this study, we propose a general-purpose, language-conditioned approach that combines base skill priors and imitation learning under unstructured data to enhance the algorithm's generalization in adapting to unfamiliar environments. We assess our model's performance in both simulated and real-world environments using a zero-shot setting. In the simulated environment, the proposed approach surpasses previously reported scores for CALVIN benchmark, especially in the challenging Zero-Shot Multi-Environment setting. The average completed task length, indicating the average number of tasks the agent can continuously complete, improves more than 2.5 times compared to the state-of-the-art method HULC. In addition, we conduct a zero-shot evaluation of our policy in a real-world setting, following training exclusively in simulated environments without additional specific adaptations. In this evaluation, we set up ten tasks and achieved an average 30% improvement in our approach compared to the current state-of-the-art approach, demonstrating a high generalization capability in both simulated environments and the real world. For further details, including access to our code and videos, please refer to our supplementary materials

    Learning from Symmetry: Meta-Reinforcement Learning with Symmetric Data and Language Instructions

    Full text link
    Meta-reinforcement learning (meta-RL) is a promising approach that enables the agent to learn new tasks quickly. However, most meta-RL algorithms show poor generalization in multiple-task scenarios due to the insufficient task information provided only by rewards. Language-conditioned meta-RL improves the generalization by matching language instructions and the agent's behaviors. Learning from symmetry is an important form of human learning, therefore, combining symmetry and language instructions into meta-RL can help improve the algorithm's generalization and learning efficiency. We thus propose a dual-MDP meta-reinforcement learning method that enables learning new tasks efficiently with symmetric data and language instructions. We evaluate our method in multiple challenging manipulation tasks, and experimental results show our method can greatly improve the generalization and efficiency of meta-reinforcement learning

    Decision Tree Based Sea-Surface Weak Target Detection With False Alarm Rate Controllable

    No full text

    Optimal Estimation in Wireless Sensor Networks With Energy Harvesting

    No full text
    corecore