39 research outputs found

    Lifelong-MonoDepth: Lifelong Learning for Multi-Domain Monocular Metric Depth Estimation

    Full text link
    With the rapid advancements in autonomous driving and robot navigation, there is a growing demand for lifelong learning models capable of estimating metric (absolute) depth. Lifelong learning approaches potentially offer significant cost savings in terms of model training, data storage, and collection. However, the quality of RGB images and depth maps is sensor-dependent, and depth maps in the real world exhibit domain-specific characteristics, leading to variations in depth ranges. These challenges limit existing methods to lifelong learning scenarios with small domain gaps and relative depth map estimation. To facilitate lifelong metric depth learning, we identify three crucial technical challenges that require attention: i) developing a model capable of addressing the depth scale variation through scale-aware depth learning, ii) devising an effective learning strategy to handle significant domain gaps, and iii) creating an automated solution for domain-aware depth inference in practical applications. Based on the aforementioned considerations, in this paper, we present i) a lightweight multi-head framework that effectively tackles the depth scale imbalance, ii) an uncertainty-aware lifelong learning solution that adeptly handles significant domain gaps, and iii) an online domain-specific predictor selection method for real-time inference. Through extensive numerical studies, we show that the proposed method can achieve good efficiency, stability, and plasticity, leading the benchmarks by 8% to 15%

    ESX Secretion-Associated Protein C From Mycobacterium tuberculosis Induces Macrophage Activation Through the Toll-Like Receptor-4/Mitogen-Activated Protein Kinase Signaling Pathway

    Get PDF
    Mycobacterium tuberculosis, as a facultative intracellular pathogen, can interact with host macrophages and modulate macrophage function to influence innate and adaptive immunity. Proteins secreted by the ESX-1 secretion system are involved in this relationship. Although the importance of ESX-1 in host-pathogen interactions and virulence is well-known, the primary role is ascribed to EsxA (EAST-6) in mycobacterial pathogenesis and the functions of individual components in the interactions between pathogens and macrophages are still unclear. Here, we investigated the effects of EspC on macrophage activation. The EspC protein is encoded by an espA/C/D cluster, which is not linked to the esx-1 locus, but is essential for the secretion of the major virulence factors of ESX-1, EsxA and EsxB. Our results showed that both EspC protein and EspC overexpression in M. smegmatis induced pro-inflammatory cytokines and enhanced surface marker expression. This mechanism was dependent on Toll-like receptor 4 (TLR4), as demonstrated using EspC-treated macrophages from TLR4−/− mice, leading to decreased pro-inflammatory cytokine secretion and surface marker expression compared with those from wild-type mice. Immunoprecipitation and immunofluorescence assays showed that EspC interacted with TLR4 directly. Moreover, EspC could activate macrophages and promote antigen presentation by inducing mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor-κB activation. The EspC-induced cytokine expression, surface marker upregulation, and MAPK signaling activation were inhibited when macrophages were blocked with anti-TLR4 antibodies or pretreated with MAPK inhibitors. Furthermore, our results showed that EspC overexpression enhanced the survival of M. smegmatis within macrophages and under stress conditions. Taken together, our results indicated that EspC may be another ESX-1 virulence factor that not only modulates the host innate immune response by activating macrophages through TLR4-dependent MAPK signaling but also plays an important role in the survival of pathogenic mycobacteria in host cells

    The safety and efficacy of carbon nanoparticle suspension injection versus indocyanine green tracer-guided lymph node dissection during radical gastrectomy (FUTURE-01): A single-center randomized controlled trial protocol

    Get PDF
    BackgroundThe use of lymph node (LN) tracers can help obtain a complete dissection of the lymph nodes and increase the detection rate of LNs and metastatic LNs. Carbon nanoparticle suspension injection (CNSI) and indocyanine green (ICG) have been widely used in radical gastrectomy in recent years. Nevertheless, the comparison of their clinical effects has not been studied.Method/designThe FUTURE-01 trial will be the first randomized, open-label, single-center trial to compare CNSI and ICG. The study started in 2021 and enrolled 96 patients according to a prior sample size calculation. The primary outcome is the number of LNs retrieved. The secondary outcomes are LN staining rate, LN metastasis rate, stained LN metastasis rate, perioperative recovery and survival.ConclusionBy comparing the safety and efficacy of CNSI and ICG tracer-guided LN dissection in patients with gastric cancer, we can determine the most appropriate LN tracer at present. With the help of LN tracers, the operation is simplified, and the prognosis of these patients is improved. Our study is a prospective exploration of the safety, efficacy, and prognosis of CNSI and ICG.Clinical trial registrationhttps://clinicaltrials.gov/ct2/show/NCT05229874?cond=NCT05229874&draw=2&rank=1, identifier NCT05229874

    Design and calculation of a MPD model with constant bottom hole pressure

    No full text
    Bottom hole pressure can be maintained in a reasonable range by using the managed pressure drilling (MPD) technique with special equipment. A calculation model is established for the back pressure and drilling fluid density of constant bottom hole pressure MPD, which are calculated by iterative method. The calculation model is applied to the Well Kela 201. In the comparison of the annulus pressures at 3 314 m in the well, the conventional drilling method cannot provide the appropriate drilling fluid density, but the constant bottom hole pressure MPD technique can make the annulus pressure within the pressure window. The design result of back pressure and mud weight of the narrow pressure window illustrated that the well can drill the target zone at 2 800 m directly by using the MPD technique. It can simplify casing program and save drilling cost. The calculation example demonstrates that this technique not only reduces mud density, but also meets the demand of annulus pressure control. Narrow pressure window can be drilled safely. It provides a technical basis for optimizing well profile. Key words: constant bottom hole pressure, MPD technology, pressure control, narrow pressure window, desig

    Distributed Adaptive Finite-Time Consensus for High-Order Multi-Agent Systems with Intermittent Communications under Switching Topologies

    No full text
    In this paper, a distributed adaptive finite-time consensus (FTC) control protocol for a high-order multi-agent system (MAS) with intermittent communications under switching topologies is proposed. Meanwhile, considering the problem of heterogeneous unknown nonlinearities and other uncertain disturbances, the adaptive neural network and the sliding mode control method are used to compensate the nonlinearity of each agent separately. The agents are homogeneous, so the system has symmetry. The switching topologies considered in this paper are asymmetric. Compared with consensus protocol for asymptotic convergence, simulation results show that the proposed method can effectively solve the presence of the nonlinear and accelerate the convergence speed of the system so that an FTC can be reached

    Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication

    No full text
    Chlorite is one of the most important hydrothermal minerals in many hydrothermal uranium deposits worldwide and is commonly closely associated with the uranium mineralization. Trace elements in chlorite have been extensively applied to fingerprinting the hydrothermal fluid evolution and indicating the concealed ore bodies in porphyry Cu (-Au) deposits and skarn-related Pb-Zn deposits. However, this approach was rarely attempted on hydrothermal uranium deposits to date. Xiangshan uranium ore field, located in the southeast part of Gan-Hang Metallogenic (or Volcanic) Belt (GHMB), is the largest volcanic-related ore field in the whole country. In this study, the focus was placed on the petrographic characteristics and trace elements in hydrothermal chlorite from two typical deposits (Zoujiashan and Yunji) at Xiangshan. Four types of chlorites were identified, i.e., Chl1-Y and Chl2 from Yunji deposit, and Chl1-Z and Chl3 from Zoujiashan deposit. The pre-ore Chl1-Y and Chl1-Z are formed through replacing the original magmatic biotite. Chl2 and Chl3 occur as veinlets or disseminated, and are closely associated with early-ore U mineralization and main-ore U mineralization, respectively. All the four types of chlorites are typically trioctahedral chlorite. Vein-type/disseminated Chl2 and Chl3 in ore veins were precipitated directly from the hydrothermal fluids through dissolution-migration-precipitation mechanism, whereas the replacement-type chlorite was formed by the dissolution–crystallization mechanism. Empirical geothermometry indicates that the chlorite from Yunji and Zoujiashan were crystallized at 179~277 °C, indicating a mesothermal-epithermal precipitation environment. EPMA and LA-ICP-MS results show that the replacement-type chlorite has relatively consistent compositions at Yunji and Zoujiashan. Both Chl2 and Chl3 are enriched in U, Th but depleted in Mn and Ti. Compared with the Chl2 related to early-ore U mineralization, Chl3 that formed at main-ore stage has higher concentrations of Fe, U, Th, REEs, Mn and Ti, as well as higer Fe/(Fe + Mg) ratios. Such compositional differences between Chl2 and Chl3 are mainly attributed to the formation temperatures and fluid compositions/natures. Combined with petrology and chemical compositions of different types of chlorite, we propose that the presence of vein-type/disseminated chlorite with high U and Fe/(Fe + Mg) ratio but relatively low Mn, Ti and Pb contents can be regarded as an effective vector toward the most economic (high U grade) mineralized zone, whereas the occurrence of Chl2 is likely to indicate the subeconomic U mineralization and less potential exploration for uranium at depth

    A Method of UAVs Route Optimization Based on the Structure of the Highway Network

    No full text
    It is essential for transportation management centers to establish a network of fixed and mobile sensors to collect traffic information of highway network, especially for very important links with frequent traffic events. Emerging Unmanned Aerial Vehicles (UAVs), it is introduced as a mobile sensor to collect road traffic information and its cruise route planning problem is researched based on the highway network physical structure. First, according to existing traffic data, a method used to calculate the link importance degree index is proposed, and the index is used to evaluate the link's information. Second, a multiobjective optimization model is proposed, its aim is to minimize the total cruise time under detecting as many important links as possible and minimize the information value undetected by UAVs, and the fuzzy operator is introduced to the constraint conditions. Finally, a case study is used to demonstrate the feasibility and effectiveness of proposed model about UAVs’ route planning

    A Comprehensive Multi-Factor Method for Identifying Overflow Fluid Type

    No full text
    Accurate identification of overflow fluid types facilitates timely and effective handling of onsite overflow accidents. Research into identifying the type of overflow fluid is limited, and there are only simple calculation models that do not consider enough effects; additionally, accuracy needs to be improved and the identification method is not perfect. If there is no drilling data, it is impossible to identify the overflow fluid. Therefore, this paper modifies the density calculation model of overflow fluid by considering the influence of the temperature, pressure field, and two-phase flow model, making the calculation result more accurate and universal, and puts forward a comprehensive method for auxiliary identification based on gas logging interpretation. This paper uses the gas state equation to verify the accuracy of the overflow density model; after verification using data from more than 20 overflowing wells, the method was found to be practical and had an accuracy rate of more than 90%. Thus, this study and the proposed method can provide guidance for dealing with overflow accidents in the field and any follow-up research
    corecore