45 research outputs found

    Local expression of tumor necrosis factor-receptor 1:immunoglobulin G can induce salivary gland dysfunction in a murine model of Sjögren's syndrome

    Get PDF
    Tumor necrosis factor is a pleiotropic cytokine with potent immune regulatory functions. Although tumor necrosis factor inhibitors have demonstrated great utility in treating other autoimmune diseases, such as rheumatoid arthritis, there are conflicting results in Sjögren's syndrome. The aim of this study was to assess the effect of a locally expressed tumor necrosis factor inhibitor on the salivary gland function and histopathology in an animal model of Sjögren's syndrome. Using in vivo adeno associated viral gene transfer, we have stably expressed soluble tumor necrosis factor-receptor 1-Fc fusion protein locally in the salivary glands in the Non Obese Diabetic model of Sjögren's syndrome. Pilocarpine stimulated saliva flow was measured to address the salivary gland function and salivary glands were analyzed for focus score and cytokine profiles. Additionally, cytokines and autoantibody levels were measured in plasma. Local expression of tumor necrosis factor-receptor 1:immunoglobulin G fusion protein resulted in decreased saliva flow over time. While no change in lymphocytic infiltrates or autoantibody levels was detected, statistically significant increased levels of tumor growth factor-beta1 and decreased levels of interleukin-5, interleukin-12p70 and interleukin -17 were detected in the salivary glands. In contrast, plasma levels showed significantly decreased levels of tumor growth factor-beta1 and increased levels of interleukin-4, interferon-gamma, interleukin-10 and interleukin-12p70. Our findings suggest that expression of tumor necrosis factor inhibitors in the salivary gland can have a negative effect on salivary gland function and that other cytokines should be explored as points for therapeutic intervention in Sjögren's syndrom

    Pathogenic effect of interleukin-17A in induction of Sjogren's syndrome-like disease using adenovirus-mediated gene transfer

    Get PDF
    Introduction Sjögren's syndrome (SS) involves a chronic, progressive inflammation primarily of the salivary and lacrimal glands leading to decreased levels of saliva and tears resulting in dry mouth and dry eye diseases. Seminal findings regarding TH17 cell populations that secrete predominantly interleukin (IL)-17A have been shown to play an important role in an increasing number of autoimmune diseases, including SS. In the present study, we investigated the function of IL-17A on the development and onset of SS. Methods Adenovirus serotype 5 (Ad5) vectors expressing either IL-17A or LacZ were infused via retrograde cannulation into the salivary glands of C57BL/6J mice between 6 and 8 weeks of age or between 15 and 17 weeks of age. The mice were characterized for SS phenotypes. Results Disease profiling indicated that SS-non-susceptible C57BL/6J mice whose salivary glands received the Ad5-IL17A vector developed a SS-like disease profile, including the appearance of lymphocytic foci, increased cytokine levels, changes in antinuclear antibody profiles, and temporal loss of saliva flow. Conclusions Induction of SS pathology by IL-17A in SS-non-susceptible mice strongly suggests that IL-17A is an important inflammatory cytokine in salivary gland dysfunction. Thus, localized anti-IL17 therapy may be effective in preventing glandular dysfunction.National Institute of Dental and Craniofacial Research (U.S.) (PHS Grants K99DE018958)National Institute of Allergy and Infectious Diseases (U.S.) (R21AI081952)Sjogren's Syndrome FoundationUniversity of Florida. Center for Orphaned Autoimmune DisordersNational Institute of Dental and Craniofacial Research (U.S.) (Intramural research grant)National Institutes of Health (U.S.

    Location of Immunization and Interferon-γ Are Central to Induction of Salivary Gland Dysfunction in Ro60 Peptide Immunized Model of Sjögren's Syndrome

    Get PDF
    INTRODUCTION: Anti-Ro antibodies can be found in the serum of the majority of patients with Sjögren's syndrome (SS). Immunization with a 60-kDa Ro peptide has been shown to induce SS-like symptoms in mice. The aim of this study was to investigate factors involved in salivary gland (SG) dysfunction after immunization and to test whether the induction of SS could be improved. METHODS: Ro60 peptide immunization was tested in Balb/c mice, multiple antigenic peptide (MAP)-Ro60 and Pertussis toxin (PTX) were tested in SJL/J mice. In addition, two injection sites were compared in these two strains: the abdominal area and the tailbase. Each group of mice was tested for a loss of SG function, SG lymphocytic infiltration, anti-Ro and anti-La antibody formation, and cytokine production in cultured cells or homogenized SG extracts. RESULTS: Ro60 peptide immunization in the abdominal area of female Balb/c mice led to impaired SG function, which corresponded with increased Th1 cytokines (IFN-γ and IL-12) systemically and locally in the SG. Moreover, changing the immunization conditions to MAP-Ro60 in the abdominal area, and to lesser extend in the tailbase, also led to impaired SG function in SJL/J mice. As was seen in the Balb/c mice, increased IFN-γ in the SG draining lymph nodes accompanied the SG dysfunction. However, no correlation was observed with anti-MAP-Ro60 antibody titers, and there was no additional effect on disease onset or severity. CONCLUSIONS: Effective induction of salivary gland dysfunction after Ro60 peptide immunization depended on the site of injection. Disease induction was not affected by changing the immunization conditions. However, of interest is that the mechanism of action of Ro60 peptide immunization appears to involve an increase in Th1 cytokines, resulting in the induction of SG dysfunction

    Effect of Soluble ICAM-1 on a Sjögren's Syndrome-like Phenotype in NOD Mice Is Disease Stage Dependent

    Get PDF
    Intercellular adhesion molecule-1 (ICAM-1) is involved in migration and co-stimulation of T and B cells. Membrane bound ICAM-1 is over expressed in the salivary glands (SG) of Sjögren's syndrome (SS) patients and has therefore been proposed as a potential therapeutic target. To test the utility of ICAM-1 as a therapeutic target, we used local gene therapy in Non Obese Diabetic (NOD) mice to express soluble (s)ICAM-1 to compete with membrane bound ICAM-1 for binding with its receptor. Therapy was given prior to and just after the influx of immune cells into the SG.A recombinant serotype 2 adeno associated virus (rAAV2) encoding ICAM-1/Fc was constructed and its efficacy tested in the female NOD mice after retrograde instillation in SG at eight (early treatment) and ten (late treatment) weeks of age. SG inflammation was evaluated by focus score and immunohistochemical quantification of infiltrating cell types. Serum and SG tissue were analyzed for immunoglobulins (Ig).Early treatment with ICAM-1/Fc resulted in decreased average number of inflammatory foci without changes in T and B cell composition. In contrast, late treated mice did not show any change in focus scores, but immunohistochemical staining showed an increase in the overall number of CD4+ and CD8+ T cells. Moreover, early treated mice showed decreased IgM within the SGs, whereas late treated mice had increased IgM levels, and on average higher IgG and IgA.Blocking the ICAM-1/LFA-1 interaction with sICAM-1/Fc may result in worsening of a SS like phenotype when infiltrates have already formed within the SG. As a treatment for human SS, caution should be taken targeting the ICAM-1 axis since most patients are diagnosed when inflammation is clearly present within the SG

    Microvascular Doppler–assisted Microsurgical Left Spermatic-inferior Epigastric Vein Anastomosis for Treating Nutcracker Syndrome–associated Varicocele

    No full text
    Background: Nutcracker syndrome (NCS) is a rare cause of varicocele and its treatment is still controversial. Objective: To summarize the surgical strategy and outcomes of microvascular Doppler (MVD)-assisted microsurgical left spermatic-inferior epigastric vein anastomosis (MLSIEVA) with microsurgical varicocelectomy (MV) at the same incision for treating NCS-associated varicocele. Design, setting, and participants: A retrospective analysis of 13 cases of NCS-associated varicocele between July 2018 and January 2022 was performed. Surgical procedure: A small incision in the body projection corresponding to the deep inguinal ring was chosen as the surgical incision. All patients underwent MLSIEVA and MV with the assistance of MVD. Measurements: Patients received real-time Doppler ultrasound (DUS) before and after surgery; urine red blood cells and protein were tested, with a follow-up time of 12–53 mo. Results and limitations: All patients had no intraoperative complications, and all postoperative symptoms of hematuria or proteinuria, scrotal swelling, and low back pain disappeared. Comparing pre- and postoperative DUS, two patients did not show any improvement in their postoperative measurements. However, in the remaining patients, the internal diameter of the renal vein at the hilum portion and at the aortomesenteric angle portion, as well as their ratio, improved significantly compared with preoperative measurements. No complications or recurrence of varicocele was observed during postoperative follow-up. Conclusions: Our study suggests that MVD-assisted MLSIEVA with MV is feasible with no major short-term complication and effective regarding the treatment of varicocele and NCS. Patient summary: We investigated microsurgery mediated by microultrasound for the treatment of varicocele associated with nutcracker syndrome. We found this procedure to be safe and effective with good long-term results

    Toxicity and biodistribution of the serotype 2 recombinant adeno-associated viral vector, encoding Aquaporin-1, after retroductal delivery to a single mouse parotid gland.

    No full text
    In preparation for testing the safety of using serotype 2 recombinant adeno-associated vector, encoding Aquaporin-1 to treat radiation-induced salivary gland damage in a phase 1 clinical trial, we conducted a 13 week GLP biodistribution and toxicology study using Balb/c mice. To best assess the safety of rAAV2hAQP1 as well as resemble clinical delivery, vector (10(8), 10(9), 10(10), or 4.4 × 10(10) vector particles/gland) or saline was delivered to the right parotid gland of mice via retroductal cannulation. Very mild surgically induced inflammation was caused by this procedure, seen in 3.6% of animals for the right parotid gland, and 5.3% for the left parotid gland. Long term distribution of vector appeared to be localized to the site of cannulation as well as the right and left draining submandibular lymph nodes at levels >50 copies/μg in some animals. As expected, there was a dose-related increase in neutralizing antibodies produced by day 29. Overall, animals appeared to thrive, with no differences in mean body weight, food or water consumption between groups. There were no significant adverse effects due to treatment noted by clinical chemistry and pathology evaluations. Hematology assessment of serum demonstrated very limited changes to the white blood cell, segmented neutrophils, and hematocrit levels and were concluded to not be vector-associated. Indicators for liver, kidney, cardiac functions and general tissue damage showed no changes due to treatment. All of these indicators suggest the treatment is clinically safe

    Hepatic HDAC3 Regulates Systemic Iron Homeostasis and Ferroptosis via the Hippo Signaling Pathway

    No full text
    Histone deacetylases (HDACs) are epigenetic regulators that play an important role in determining cell fate and maintaining cellular homeostasis. However, whether and how HDACs regulate iron metabolism and ferroptosis (an iron-dependent form of cell death) remain unclear. Here, the putative role of hepatic HDACs in regulating iron metabolism and ferroptosis was investigated using genetic mouse models. Mice lacking Hdac3 expression in the liver (Hdac3-LKO mice) have significantly reduced hepatic Hamp mRNA (encoding the peptide hormone hepcidin) and altered iron homeostasis. Transcription profiling of Hdac3-LKO mice suggests that the Hippo signaling pathway may be downstream of Hdac3. Moreover, using a Hippo pathway inhibitor and overexpressing the transcriptional regulator Yap (Yes-associated protein) significantly reduced Hamp mRNA levels. Using a promoter reporter assay, we then identified 2 Yap-binding repressor sites within the human HAMP promoter region. We also found that inhibiting Hdac3 led to increased translocation of Yap to the nucleus, suggesting activation of Yap. Notably, knock-in mice expressing a constitutively active form of Yap (Yap K342M) phenocopied the altered hepcidin levels observed in Hdac3-LKO mice. Mechanistically, we show that iron-overload-induced ferroptosis underlies the liver injury that develops in Hdac3-LKO mice, and knocking down Yap expression in Hdac3-LKO mice reduces both iron-overload- and ferroptosis-induced liver injury. These results provide compelling evidence supporting the notion that HDAC3 regulates iron homeostasis via the Hippo/Yap pathway and may serve as a target for reducing ferroptosis in iron-overload-related diseases

    Dynamic cellular changes in acute kidney injury caused by different ischemia time

    No full text
    Summary: Ischemia reperfusion injury (IRI), often related to surgical procedures, is one of the important causes of acute kidney injury (AKI). To decipher the dynamic process of AKI caused by IRI (with prolonged ischemia phase), we performed single-cell RNA sequencing (scRNA-seq) of clinically relevant IRI murine model with different ischemic intervals. We discovered that Slc5a2hi proximal tubular cells were susceptible to AKI and highly expressed neutral amino acid transporter gene Slc6a19, which was dramatically decreased over the time course. With the usage of mass spectrometry–based metabolomic analysis, we detected that the level of neutral amino acid isoleucine dropped off in AKI mouse plasma metabolites. And the reduction of plasma isoleucine was also verified in patients with cardiac surgery–associated acute kidney injury (CSA-AKI). The findings advanced the understanding of dynamic process of AKI and introduced reduction of isoleucine as a potential biomarker for CSA-AKI
    corecore