33 research outputs found

    Selenium status in the body and cardiovascular disease: a systematic review and meta-analysis

    Get PDF
    Background: Both experimental and observational studies have provided conflicting evidence on the associations of selenium with incidence and mortality of cardiovascular disease (CVD). The aim of this study was to evaluate the association between selenium status in the body and incidence and mortality of CVD by performing a systematic review and meta-analysis of observational studies and randomized controlled trials. Methods: A systematic search for articles in MEDLINE (Ovid), Embase, Web of Science (Thomson Reuters) and Cochrane library (Wiley) was conducted. Thirteen of the 1811 articles obtained from the databases met our inclusion criteria and were considered in the final analysis. The effect sizes were presented as weighted relative risk (RR) and 95% confidence intervals (CIs) using random-effects model. To detect dose-response relationships, we used meta-regression. Results: Overall, there was a reduced risk of CVD incidence (RR = 0.66; 95% CI: 0.40-1.09) and mortality (RR = 0.69; 95% CI: 0.57-0.84) in physiologically high selenium status compared to low selenium status in the body. There was a 15% (RR = 0.85, 95% CI: 0.76-0.94) decreased risk of CVD incidence per 10 µg increment in blood selenium concentration. In addition, a statistically significantly nonlinear dose-response relationship was found between CVD mortality and increased blood selenium concentration with the lowest risk at the 30-35 µg increment in blood selenium. Conclusions: Physiologically high selenium levels in the body are associated with decreased risk for CVD incidence and mortality, however, people should be cautious about the potential harmful effects from excessive intake of selenium.publishedVersio

    FTIR characteristics of charcoal with different combustion degrees as an indication of the genesis by and their significances for formation of fusinite in coal

    Get PDF
    Fourier transform infrared spectroscopy (FTIR), as a non-destructive method, is widely used for the identification of compounds and the characterization of molecular structures. In order to characterize the changes in the chemical structure of charcoal under different combustion temperatures, and thus to provide a theoretical basis for the formation of fusinite in coal, plant samples (charcoal) from modern wildfires with different degrees of combustion were selected to quantify their chemical structures using FTIR. The results shown that the sample reflectance was positively proportional to the combustion temperature. The sample No. 1 with maximum combustion temperature had the highest degree of combustion, which was measured to reach 518 ℃. The aromatic structure was dominated by tri-substituted benzene rings in all samples except the highest combustion sample No. 1, but dehydrocondensation occurred with increasing combustion temperature, resulting in a reduction of tri-substituted content of benzene rings to 20.5%. The tetra-substituted content was elevated due to dehydroaromatization of the naphthenic structure, while the change in the penta-substituted content was related to the cyclization of aliphatic chain and the decarboxylation of benzene ring. With the increase of combustion temperature, the CC content gradually increased due to the formation of aromatic hydrocarbons or the shedding of molecular side chains after dehydrogenation of cycloalkanes, reached 32% in the sample No. 1. The content of C-O first decreased and then increased. In the sample No. 1, the content of alkyl ether and aryl ether was the lowest, and the content of phenolic hydroxyl group was the highest, which may be the generation of phenolic substances by thermal breakage of ether bond under high temperature combustion. The CO content increased and then decreased to as low as 5.6% in the sample No. 1, which was due to the poor stability of the bond. Due to the influence of combustion temperature, the content of fatty substances varied greatly, with an overall gradual increase in methylene content, a decrease in methyl group, and an increase in branching degree. There were five types of hydrogen bonds in the samples, with ether-oxygen hydrogen bonds predominating in samples affected by low temperature (>55%). Cyclic hydrogen bonds and hydroxyl-N hydrogen bonds appeared in sample No. 1, while the content of ether-oxygen hydrogen bonds decreased significantly to 13.2%, which was attributed to the reduction of oxygen-containing functional groups caused by the increasing temperature. Comparison of reflectance and FTIR characteristics of fusinite in coal revealed that the characteristics of fusinite (semifusinite) in coal were very similar to those of charcoal, which might be produced mainly by wildfires. These changes indicated the effect of combustion temperature on the chemical structure in charcoal, reflecting the process of organic molecular structure changed with temperature in charcoal, and providing a theoretical basis for the evolution of organic matter and the formation of fusinite in coal

    Geochemical characteristics of rare earth elements in Late Permian coals in Western Henan and indicative meaning

    Get PDF
    With the wide application of rare earth metals in high-tech fields such as medical treatment and new materials, its strategic position has been increasing. As a major country in rare earth, China supplies rare earth products of different varieties and grades to all countries in the world, making great contributions to the development of emerging industries in the world .In order to explore the enrichment degree, occurrence state and sedimentary environment of rare earth elements in late Permian coal in western Henan, 20 stratified coal samples from No.21 coal in Huixiang mining area in western Henan were taken as the main research object. The rare earth elements and major elements in stratified coal samples were measured by ICP-MS and XRF, and the content characteristics and enrichment degree of rare earth elements in coal samples were discussed. The occurrence state and sedimentary environment of rare earth elements in samples were discussed by correlation analysis and characteristic parameters .The results show that the mass concentration of REY is 35.29-133.61 μg/g, and the average concentration is 79.14 μg/g, which is slightly higher than the average concentration of REY in the world coal, but obviously lower than the average concentration of REY in China coal. The REY content is low, and LREY is mainly enriched. There is a significant positive correlation between REY and ash content (Ad), SiO2, Al2O3 and other major oxides in the No.21 coal of Huixiang mining area, indicating that REY mainly occurs in clay minerals .The negative anomalies of Ce and Eu elements and slight positive anomalies of (Gd/Gd)N* in the samples in the study area indicate that the study area is mainly affected by terrigenous sources and the coal forming environment is a weakly acidic reducing environment

    Research on the reliability of light power and intensity of current model of Vertical Cavity Surface Emitting Laser

    Full text link
    We study the reliability of light power and intensity of current (L-I) model of Vertical Cavity Surface Emitting Laser (VCSEL). We use the methods of nonlinear least squares, polynomial fitting and numerical calculation to estimate the model of parameters. The simulation shows that the characteristics of the temperature of VCSEL is almost the same as the model under 20℃. It proves the model is reliable

    A Review of Recent Progress of Carbon Capture, Utilization, and Storage (CCUS) in China

    Full text link
    The continuous temperature rise has raised global concerns about CO2 emissions. As the country with the largest CO2 emissions, China is facing the challenge of achieving large CO2 emission reductions (or even net-zero CO2 emissions) in a short period. With the strong support and encouragement of the Chinese government, technological breakthroughs and practical applications of carbon capture, utilization, and storage (CCUS) are being aggressively pursued, and some outstanding accomplishments have been realized. Based on the numerous information from a wide variety of sources including publications and news reports only available in Chinese, this paper highlights the latest CCUS progress in China after 2019 by providing an overview of known technologies and typical projects, aiming to provide theoretical and practical guidance for achieving net-zero CO2 emissions in the future

    Hormone Signals Involved in the Regulation of Cucumber Seedling Lateral Branch Elongation by Far-Red Light

    Full text link
    Cucumber (Cucumis sativus L.) lateral branch elongation is influenced by a variety of environmental signals, including light [e.g., far-red (FR) light] and hormones. In this experiment, the effect of FR light on the lateral branch elongation of cucumber (‘Zhongnong No. 26’) seedlings was investigated. The results showed that FR light significantly inhibited the lateral branch elongation of cucumber seedlings. In addition, FR light significantly increased the auxin (indole-3-acetic acid, IAA) content, decreased the cytokinin (CTK; Zeatin) content, and suppressed the expression of most CTK synthetic-related genes, such as IPTs, in cucumber seedlings. The lateral branch elongation of cucumber seedlings was assessed in response to decapitation and exogenous 6-BA treatment to further investigate the relationship between IAA and CTK on the lateral branch elongation of cucumber seedlings under FR light. Both decapitation and exogenous 6-BA treatment eliminated the inhibitory effect of FR light on the lateral branch elongation of cucumber seedlings. In conclusion, these results indicated that IAA and CTK were involved in the regulatory effects of FR light on cucumber seedling lateral branch elongation

    Micro- and nanoplastics in soil:Linking sources to damage on soil ecosystem services in life cycle assessment

    Full text link
    Soil ecosystems are crucial for providing vital ecosystem services (ES), and are increasingly pressured by the intensification and expansion of human activities, leading to potentially harmful consequences for their related ES provision. Micro- and nanoplastics (MNPs), associated with releases from various human activities, have become prevalent in various soil ecosystems and pose a global threat. Life Cycle Assessment (LCA), a tool for evaluating environmental performance of product and technology life cycles, has yet to adequately include MNPs-related damage to soil ES, owing to factors like uncertainties in MNPs environmental fate and ecotoxicological effects, and characterizing related damage on soil species loss, functional diversity, and ES. This study aims to address this gap by providing as a first step an overview of the current understanding of MNPs in soil ecosystems and proposing a conceptual approach to link MNPs impacts to soil ES damage. We find that MNPs pervade soil ecosystems worldwide, introduced through various pathways, including wastewater discharge, urban runoff, atmospheric deposition, and degradation of larger plastic debris. MNPs can inflict a range of ecotoxicity effects on soil species, including physical harm, chemical toxicity, and pollutants bioaccumulation. Methods to translate these impacts into damage on ES are under development and typically focus on discrete, yet not fully integrated aspects along the impact-to-damage pathway. We propose a conceptual framework for linking different MNPs effects on soil organisms to damage on soil species loss, functional diversity loss and loss of ES, and elaborate on each link. Proposed underlying approaches include the Threshold Indicator Taxa Analysis (TITAN) for translating ecotoxicological effects associated with MNPs into quantitative measures of soil species diversity damage; trait-based approaches for linking soil species loss to functional diversity loss; and ecological networks and Bayesian Belief Networks for linking functional diversity loss to soil ES damage. With the proposed conceptual framework, our study constitutes a starting point for including the characterization of MNPs-related damage on soil ES in LCA

    A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China

    Full text link
    As a valuable mineral resource, uranium is extensively utilized in nuclear power generation, radiation therapy, isotope labeling, and tracing. In order to achieve energy structure diversification, reduce dependence on traditional fossil fuels, and promote the sustainable development of energy production and consumption, research on the metallogenic mechanisms and related development technologies of uranium resources has been one of the focuses of China’s energy development. Sandstone-type uranium deposits make up approximately 43% of all deposits in China, making them the most prevalent form of uranium deposit there. Sandstone-type uranium deposits and hydrocarbon resources frequently coexist in the same basin in China. Therefore, this study summarizes the spatial and chronological distribution, as well as the geological characteristics, of typical sandstone-type uranium deposits in China’s hydrocarbon-bearing basins. From the perspectives of fluid action, geological structure, and sedimentary environment, the metallogenic mechanisms of sandstone-type uranium deposits in hydrocarbon-bearing basins are explored. According to the research, the rapid reduction effect of oil and gas in the same basin is a major factor in the generation of relatively large uranium deposits. Additionally, ions such as CO32− and HCO3− in hydrothermal fluids of hydrocarbon-bearing basins, which typically originate from dispersed oil and gas, are more conducive to uranium enrichment and sedimentation. This study provides guidance for efficient sandstone-type uranium deposit exploration and production in hydrocarbon-bearing basins and helps to achieve significant improvements in uranium resource exploitation efficiency
    corecore