1,105 research outputs found
Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory
Device-to-Device (D2D) communication has been recognized as a promising
technique to offload the traffic for the evolved Node B (eNB). However, the D2D
transmission as an underlay causes severe interference to both the cellular and
other D2D links, which imposes a great technical challenge to radio resource
allocation. Conventional graph based resource allocation methods typically
consider the interference between two user equipments (UEs), but they cannot
model the interference from multiple UEs to completely characterize the
interference. In this paper, we study channel allocation using hypergraph
theory to coordinate the interference between D2D pairs and cellular UEs, where
an arbitrary number of D2D pairs are allowed to share the uplink channels with
the cellular UEs. Hypergraph coloring is used to model the cumulative
interference from multiple D2D pairs, and thus, eliminate the mutual
interference. Simulation results show that the system capacity is significantly
improved using the proposed hypergraph method in comparison to the conventional
graph based one.Comment: 27 pages,10 figure
Laterally-Coupled Dual-Grating Distributed Feedback Lasers for Generating Mode-Beat Terahertz Signals
We present a laterally-coupled AlGaInAs/InP DFB laser emitting two longitudinal modes simultaneously within the same cavity and integrated with EAM. A stable 0.82 THz beating signal was observed over a wide range of bias parameters
A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation
We report a dual-mode semiconductor laser that has two gratings with different periods below and above the active layer. A semiconductor optical amplifier (SOA), which is integrated with the dual-mode laser, plays an important role in balancing the optical power and reducing the linewidths of the emission modes. A stable two mode emission with the 13.92-nm spacing can be obtained over a wide range of distributed feedback and SOA injection currents. Compared with other types of dual-mode lasers, our device has the advantages of simple structure, compact size, and low fabrication cost
Inconsistencies of interannual variability and trends in long-term satellite leaf area index products
Understanding the long-term performance of global satellite leaf area index (LAI) products is important for global change research. However, few effort has been devoted to evaluating the long-term time-series consistencies of LAI products. This study compared four long-term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) in terms of trends, interannual variabilities, and uncertainty variations from 1982 through 2011. This study also used four ancillary LAI products (GEOV1, MERIS, MODIS C5, and MODIS C6) from 2003 through 2011 to help clarify the performances of the four long-term LAI products. In general, there were marked discrepancies between the four long-term LAI products. During the pre-MODIS period (1982-1999), both linear trends and interannual variabilities of global mean LAI followed the order GLASS>LAI3g>TCDR>GLOBMAP. The GLASS linear trend and interannual variability were almost 4.5 times those of GLOBMAP. During the overlap period (2003-2011), GLASS and GLOBMAP exhibited a decreasing trend, TCDR no trend, and LAI3g an increasing trend. GEOV1, MERIS, and MODIS C6 also exhibited an increasing trend, but to a much smaller extent than that from LAI3g. During both periods, the R2 of detrended anomalies between the four long-term LAI products was smaller than 0.4 for most regions. Interannual variabilities of the four long-term LAI products were considerably different over the two periods, and the differences followed the order GLASS>LAI3g>TCDR>GLOBMAP. Uncertainty variations quantified by a collocation error model followed the same order. Our results indicate that the four long-term LAI products were neither intraconsistent over time nor interconsistent with each other. These inconsistencies may be due to NOAA satellite orbit changes and MODIS sensor degradation. Caution should be used in the interpretation of global changes derived from the four long-term LAI products
Optoelectronic THz Frequency Synthesizer Based on a Multiple Laser Photonic Integrated Circuit
An optoelectronic synthesizer based on photonic integrated circuits is reported for use in THz communication systems. The source has widely selectable channels, a broad range of continuous tuning (0.254-2.723 THz), and excellent resilience against failure
- …