20,723 research outputs found

    The Top Quark Production Asymmetries AFBtA_{FB}^t and AFBâ„“A_{FB}^{\ell}

    Full text link
    A large forward-backward asymmetry is seen in both the top quark rapidity distribution AFBtA_{FB}^t and in the rapidity distribution of charged leptons AFBâ„“A_{FB}^\ell from top quarks produced at the Tevatron. We study the kinematic and dynamic aspects of the relationship of the two observables arising from the spin correlation between the charged lepton and the top quark with different polarization states. We emphasize the value of both measurements, and we conclude that a new physics model which produces more right-handed than left-handed top quarks is favored by the present data.Comment: accepted for publication in Physical Review Letter

    BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies

    Get PDF
    Gene-gene interactions have long been recognized to be fundamentally important to understand genetic causes of complex disease traits. At present, identifying gene-gene interactions from genome-wide case-control studies is computationally and methodologically challenging. In this paper, we introduce a simple but powerful method, named `BOolean Operation based Screening and Testing'(BOOST). To discover unknown gene-gene interactions that underlie complex diseases, BOOST allows examining all pairwise interactions in genome-wide case-control studies in a remarkably fast manner. We have carried out interaction analyses on seven data sets from the Wellcome Trust Case Control Consortium (WTCCC). Each analysis took less than 60 hours on a standard 3.0 GHz desktop with 4G memory running Windows XP system. The interaction patterns identified from the type 1 diabetes data set display significant difference from those identified from the rheumatoid arthritis data set, while both data sets share a very similar hit region in the WTCCC report. BOOST has also identified many undiscovered interactions between genes in the major histocompatibility complex (MHC) region in the type 1 diabetes data set. In the coming era of large-scale interaction mapping in genome-wide case-control studies, our method can serve as a computationally and statistically useful tool.Comment: Submitte

    Direct tunneling through high-κ\kappa amorphous HfO2_2: effects of chemical modification

    Get PDF
    We report first principles modeling of quantum tunneling through amorphous HfO2_2 dielectric layer of metal-oxide-semiconductor (MOS) nanostructures in the form of n-Si/HfO2_2/Al. In particular we predict that chemically modifying the amorphous HfO2_2 barrier by doping N and Al atoms in the middle region - far from the two interfaces of the MOS structure, can reduce the gate-to-channel tunnel leakage by more than one order of magnitude. Several other types of modification are found to enhance tunneling or induce substantial band bending in the Si, both are not desired from leakage point of view. By analyzing transmission coefficients and projected density of states, the microscopic physics of electron traversing the tunnel barrier with or without impurity atoms in the high-κ\kappa dielectric is revealed.Comment: 5 pages, 5 figure

    Impurity resonance states in electron-doped high T_c superconductors

    Full text link
    Two scenarios, i.e., the anisotropic s-wave pairing (the s-wave scenario) and the d-wave pairing coexisting with antiferromagnetism (the coexisting scenario) have been introduced to understand some of seemingly s-wave like behaviors in electron doped cuprates. We considered the electronic structure in the presence of a nonmagnetic impurity in the coexistence scenario. We found that even if the AF order opens a full gap in quasi-particle excitation spectra, the mid-gap resonant peaks in local density of states (LDoS) around an impurity can still be observed in the presence of a d-wave pairing gap. The features of the impurity states in the coexisting phase are markedly different from the pure AF or pure d-wave pairing phases, showing the unique role of the coexisting AF and d-wave pairing orders. On the other hand, it is known that in the pure s-wave case no mid-gap states can be induced by a nonmagnetic impurity. Therefore we proposed that the response to a nonmagnetic impurity can be used to differentiate the two scenarios.Comment: 5 pages, two-column revtex4, 5 figures, author list correcte

    Field Effect Transistor Nanosensor for Breast Cancer Diagnostics

    Full text link
    Silicon nanochannel field effect transistor (FET) biosensors are one of the most promising technologies in the development of highly sensitive and label-free analyte detection for cancer diagnostics. With their exceptional electrical properties and small dimensions, silicon nanochannels are ideally suited for extraordinarily high sensitivity. In fact, the high surface-to-volume ratios of these systems make single molecule detection possible. Further, FET biosensors offer the benefits of high speed, low cost, and high yield manufacturing, without sacrificing the sensitivity typical for traditional optical methods in diagnostics. Top down manufacturing methods leverage advantages in Complementary Metal Oxide Semiconductor (CMOS) technologies, making richly multiplexed sensor arrays a reality. Here, we discuss the fabrication and use of silicon nanochannel FET devices as biosensors for breast cancer diagnosis and monitoring

    Effect of electron interactions on the conductivity and exchange coupling energy of disordered metallic magnetic multilayer

    Full text link
    We consider the effect of electron-electron interactions on the current-in-plane (CIP) conductivity and exchange coupling energy of a disordered metallic magnetic multilayer. We analyze its dependence on the value of ferromagnetic splitting of conducting electrons and ferromagnetic layers relative magnetizations orientation. We show that contribution to the CIP conductivity and exchange coupling energy as a periodic function of the angle of magnetizations relative orientation experience 2π→π 2\pi \to \pi transition depending on the characteristic energies: ferromagnetic splitting of the conducting electrons and the Thouless energy of paramagnetic layer.Comment: 6 pages, 1 figur

    Empirical study on clique-degree distribution of networks

    Full text link
    The community structure and motif-modular-network hierarchy are of great importance for understanding the relationship between structures and functions. In this paper, we investigate the distribution of clique-degree, which is an extension of degree and can be used to measure the density of cliques in networks. The empirical studies indicate the extensive existence of power-law clique-degree distributions in various real networks, and the power-law exponent decreases with the increasing of clique size.Comment: 9 figures, 4 page

    Phase transition and hysteresis in scale-free network traffic

    Full text link
    We model information traffic on scale-free networks by introducing the node queue length L proportional to the node degree and its delivering ability C proportional to L. The simulation gives the overall capacity of the traffic system, which is quantified by a phase transition from free flow to congestion. It is found that the maximal capacity of the system results from the case of the local routing coefficient \phi slightly larger than zero, and we provide an analysis for the optimal value of \phi. In addition, we report for the first time the fundamental diagram of flow against density, in which hysteresis is found, and thus we can classify the traffic flow with four states: free flow, saturated flow, bistable, and jammed.Comment: 5 pages, 4 figure
    • …
    corecore