13,617 research outputs found

    Cosmological CPT Violation, Baryon/Leptogenesis and CMB Polarization

    Get PDF
    In this paper we study the cosmological CPT-violation and its implications in baryo/leptogenesis and CMB polarization. We propose specifically a variant of the models of gravitational leptogenesis. By performing a global analysis with the Markov Chain Monte Carlo (MCMC) method, we find the current CMB polarization observations from the three-year WMAP (WMAP3) and the 2003 flight of BOOMERANG (B03) data provide a weak evidence for our model. However to verify and especially exclude this type of mechanism for baryo/leptogenesis with cosmological CPT-violation, the future measurements on CMB polarization from PLANCK and CMBpol are necessary.Comment: The version appears in PL

    Probing for the Cosmological Parameters with PLANCK Measurement

    Full text link
    We investigate the constraints on cosmological parameters especially for EoS of dark energy, inflationary parameters, neutrino mass and curvature of universe using simulated Planck data. Firstly we determine cosmological parameters with current observations including ESSENCE, WMAP3, Boomerang-2K2, CBI, VSA, ACBAR, SDSS LRG and 2dFGRS, and take best-fit model as the fiducial model in simulations. In simulations we pay attention to the effects of dynamical dark energy in determination of cosmological parameters. We add simulated SNAP data to do all the simulations. Using present data, we find Quintom dark energy model is mildly favored while \LambdaCDM remains a good fit. In the framework of dynamical dark energy, the constraints on inflationary parameters, m_{\nu} and \Omega_{K} become weak compared with the constraints in \LambdaCDM. Intriguingly, we find that the inflationary models with a "blue" tilt, which are excluded about 2\sigma in \LambdaCDM model, are well within 2\sigma region with the presence of the dynamics of dark energy. The upper limits of neutrino mass are weakened by a factor of 2 (95% C.L.), say, m_{\nu}<1.59 eV and m_{\nu}<1.53 eV for two forms of parametrization of the equation of state of dark energy. The flat universe is a good fit to the current data, namely, |\Omega_{K}|<0.03 (95% C.L.). With the simulated Planck and SNAP data, dynamical dark energy and \LambdaCDM might be distinguished at 4\sigma. And uncertainties of inflationary parameters, m_{\nu} and \Omega_{K} can be reduced obviously. We also constrain the rotation angle \Delta\alpha, denoting possible cosmological CPT violation, with simulated Planck and CMBpol data and find that our results are much more stringent than current constraint and will verify cosmological CPT symmetry with a higher precision. (Abridged)Comment: 15 pages, 8 figures and 3 tables, Accepted for publication in Int.J.Mod.Phys.

    Determining Cosmological Parameters with Latest Observational Data

    Full text link
    In this paper, we combine the latest observational data, including the WMAP five-year data (WMAP5), BOOMERanG, CBI, VSA, ACBAR, as well as the Baryon Acoustic Oscillations (BAO) and Type Ia Supernoave (SN) "Union" compilation (307 sample) to determine the cosmological parameters. Our results show that the Λ\LambdaCDM model remains a good fit to the current data. In a flat universe, we obtain the tight limit on the constant EoS of dark energy as, w=−0.977±0.056w=-0.977\pm0.056 (1σ1 \sigma). For the dynamical dark energy models with time evolving EoS, we find that the best-fit values are w0=−1.08w_0=-1.08 and w1=0.368w_1=0.368, implying the preference of Quintom model whose EoS gets across the cosmological constant boundary. For the curvature of universe, our results give −0.012<Ωk<0.009-0.012<\Omega_k<0.009 (95% C.L.) when fixing w_{\DE}=-1. When considering the dynamics of dark energy, the flat universe is still a good fit to the current data. Regarding the neutrino mass limit, we obtain the upper limits, ∑mν<0.533\sum m_{\nu}<0.533 eV (95% C.L.) within the framework of the flat Λ\LambdaCDM model. When adding the SDSS Lyman-α\alpha forest power spectrum data, the constraint on ∑mν\sum m_{\nu} can be significantly improved, ∑mν<0.161\sum m_{\nu}<0.161 eV (95% C.L.). Assuming that the primordial fluctuations are adiabatic with a power law spectrum, within the Λ\LambdaCDM model, we find that the upper limit on the ratio of the tensor to scalar is r<0.200r<0.200 (95% C.L.) and the inflationary models with the slope ns≥1n_s\geq1 are excluded at more than 2σ2 \sigma confidence level. However, in the framework of dynamical dark energy models, the allowed region in the parameter space of (nsn_s,rr) is enlarged significantly. Finally, we find no evidence for the large running of the spectral index. (Abridged)Comment: 8 pages, 5 figures, 2 tables, More discussion on NE

    Supernova Constraints on Models of Neutrino Dark Energy

    Full text link
    In this paper we use the recently released Type Ia Supernova (SNIa) data to constrain the interactions between the neutrinos and the dark energy scalar fields. In the analysis we take the dark energy scalars to be either Quintessence-like or Phantom-like. Our results show the data mildly favor a model where the neutrinos couple to a phantom-like dark energy scalar, which implies the equation of state of the coupled system behaves like Quintom scenario in the sense of parameter degeneracy. We find future observations like SNAP are potentially promising to measure the couplings between neutrino and dark energy.Comment: Typos fixed and references updated. Version pressed in PR

    Primordial Gravitational Waves Measurements and Anisotropies of CMB Polarization Rotation

    Full text link
    Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several foreground issues, such as the thermal dust emission. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recent polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio rr by considering the polarization rotation angle which can be separated into a background isotropic part and a small anisotropic part. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the "self-calibration" method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including the anisotropies in the analysis could slightly weaken the constraints on rr, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle can not be taken into account properly in the analysis, the constraints on rr will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational waves accurately.Comment: 7 pages, 5 figure
    • …
    corecore