1,113 research outputs found
Radiographic analysis of the restoration of hip joint center following open reduction and internal fixation of acetabular fractures: a retrospective cohort study
BACKGROUND: Unfavorable reduction is considered one of the key factors leading to joint degeneration and compromised clinical outcome in acetabular fracture patients. Besides the columns, walls, and superior dome, the postoperative position of hip joint center (HJC), which is reported to affect hip biomechanics, should be considered during the assessment of quality of reduction. We aimed to evaluate the radiographic restoration of HJC in acetabular fractures treated with open reduction and internal fixation. METHODS: Patients with a displaced acetabular fracture that received open reduction and internal fixation in the authors’ institution during the past five years were identified from the trauma database. The horizontal and vertical shifts of HJC were measured in the standard anteroposterior view radiographs taken postoperatively. The radiographic quality of fracture reduction was graded according to Matta’s criteria. The relationships between the shift of HJC and the other variables were evaluated. RESULTS: Totally 127 patients with 56 elementary and 71 associated-type acetabular fractures were included, wherein the majority showed a medial (89.0%) and proximal (93.7%) shift of HJC postoperatively. An average of 2.8 mm horizontal and 2.2 mm vertical shift of HJC were observed, which correlated significantly with the quality of fracture reduction (P < 0.001 for both). The horizontal shift of HJC correlated with the fracture type (P = 0.022). CONCLUSIONS: The restoration of HJC correlates with the quality of reduction in acetabular fractures following open reduction and internal fixation. Further studies are required to address the effects of HJC shift on the biomechanical changes and clinical outcomes of hip joint, especially in poorly reduced acetabular fractures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2474-15-277) contains supplementary material, which is available to authorized users
Quality Investigations on Ground Improvement in Highway Engineering Practice
The constructions of highway often pass through naturally-deposited liquefiable grounds. Anti-earthquake design is essential for highway engineering practice in east China. Gravel column and dynamic compaction are often adopted for the improvements of such problematical grounds. The stability and settlement of the treated grounds depend much on the construction quality. How to investigate the quality of ground improvement is an important issue in highway engineering practice. In this study, the method of Spectral-Analysis-of-Surface-Waves (SASW) is applied to evaluate the construction quality on ground improvements by vibration gravel piles and dynamic compaction technique. The case studies show that the SASW method is a powerful way for investigating the improvement quality in highway engineering practice. The shear wave velocity measured in SASW has a relative good relationship with the N value measured in standard penetration tests
Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures
Van der Waals heterostructures have recently emerged as a new class of
materials, where quantum coupling between stacked atomically thin
two-dimensional (2D) layers, including graphene, hexagonal-boron nitride, and
transition metal dichalcogenides (MX2), give rise to fascinating new phenomena.
MX2 heterostructures are particularly exciting for novel optoelectronic and
photovoltaic applications, because 2D MX2 monolayers can have an optical
bandgap in the near-infrared to visible spectral range and exhibit extremely
strong light-matter interactions. Theory predicts that many stacked MX2
heterostructures form type-II semiconductor heterojunctions that facilitate
efficient electron-hole separation for light detection and harvesting. Here we
report the first experimental observation of ultrafast charge transfer in
photo-excited MoS2/WS2 heterostructures using both photoluminescence mapping
and femtosecond (fs) pump-probe spectroscopy. We show that hole transfer from
the MoS2 layer to the WS2 layer takes place within 50 fs after optical
excitation, a remarkable rate for van der Waals coupled 2D layers. Such
ultrafast charge transfer in van der Waals heterostructures can enable novel 2D
devices for optoelectronics and light harvesting
Real-time motion artifact suppression using convolution neural networks with penalty in fNIRS
IntroductionRemoving motion artifacts (MAs) from functional near-infrared spectroscopy (fNIRS) signals is crucial in practical applications, but a standard procedure is not available yet. Artificial neural networks have found applications in diverse domains, such as voice and image processing, while their utility in signal processing remains limited.MethodIn this work, we introduce an innovative neural network-based approach for online fNIRS signals processing, tailored to individual subjects and requiring minimal prior experimental data. Specifically, this approach employs one-dimensional convolutional neural networks with a penalty network (1DCNNwP), incorporating a moving window and an input data augmentation procedure. In the training process, the neural network is fed with simulated data derived from the balloon model for simulation validation and semi-simulated data for experimental validation, respectively.ResultsVisual validation underscores 1DCNNwP’s capacity to effectively suppress MAs. Quantitative analysis reveals a remarkable improvement in signal-to-noise ratio by over 11.08 dB, surpassing the existing methods, including the spline-interpolation, wavelet-based, temporal derivative distribution repair with a 1 s moving window, and spline Savitzky-Goaly methods. Contrast-to-noise ratio (CNR) analysis further demonstrated 1DCNNwP’s ability to restore or enhance CNRs for motionless signals. In the experiments of eight subjects, our method significantly outperformed the other approaches (except offline TDDR, t < −3.82, p < 0.01). With an average signal processing time of 0.53 ms per sample, 1DCNNwP exhibited strong potential for real-time fNIRS data processing.DiscussionThis novel univariate approach for fNIRS signal processing presents a promising avenue that requires minimal prior experimental data and adapts seamlessly to varying experimental paradigms
Abnormal magnetoresistance behavior in Nb thin film with rectangular antidot lattice
Abnormal magnetoresistance behavior is found in superconducting Nb films
perforated with rectangular arrays of antidots (holes). Generally
magnetoresistance were always found to increase with increasing magnetic field.
Here we observed a reversal of this behavior for particular in low temperature
or current density. This phenomenon is due to a strong 'caging effect' which
interstitial vortices are strongly trapped among pinned multivortices.Comment: 4 pages, 2 figure
Isolation, identification, and complete genome sequence of a bovine adenovirus type 3 from cattle in China
<p>Abstract</p> <p>Background</p> <p>Bovine adenovirus type 3 (BAV-3) belongs to the <it>Mastadenovirus </it>genus of the family <it>Adenoviridae </it>and is involved in respiratory and enteric infections of calves. The isolation of BAV-3 has not been reported prior to this study in China. In 2009, there were many cases in cattle showing similar clinical signs to BAV-3 infection and a virus strain, showing cytopathic effect in Madin-Darby bovine kidney cells, was isolated from a bovine nasal swab collected from feedlot cattle in Heilongjiang Province, China. The isolate was confirmed as a bovine adenovirus type 3 by PCR and immunofluorescence assay, and named as HLJ0955. So far only the complete genome sequence of prototype of BAV-3 WBR-1 strain has been reported. In order to further characterize the Chinese isolate HLJ0955, the complete genome sequence of HLJ0955 was determined.</p> <p>Results</p> <p>The size of the genome of the Chinese isolate HLJ0955 is 34,132 nucleotides in length with a G+C content of 53.6%. The coding sequences for gene regions of HLJ0955 isolate were similar to the prototype of BAV-3 WBR-1 strain, with 80.0-98.6% nucleotide and 87.5-98.8% amino acid identities. The genome of HLJ0955 strain contains 16 regions and four deletions in inverted terminal repeats, E1B region and E4 region, respectively. The complete genome and DNA binding protein gene based phylogenetic analysis with other adenoviruses were performed and the results showed that HLJ0955 isolate belonged to BAV-3 and clustered within the <it>Mastadenovirus </it>genus of the family <it>Adenoviridae</it>.</p> <p>Conclusions</p> <p>This is the first study to report the isolation and molecular characterization of BAV-3 from cattle in China. The phylogenetic analysis performed in this study supported the use of the DNA binding protein gene of adenovirus as an appropriate subgenomic target for the classification of different genuses of the family <it>Adenoviridae </it>on the molecular basis. Meanwhile, a large-scale pathogen and serological epidemiological investigations for BVA-3 infection might be carried out in cattle in China. This report will be a good beginning for further studies on BAV-3 in China.</p
- …