25,420 research outputs found

    Spanning Eulerian subgraphs and Catlin’s reduced graphs

    Get PDF
    A graph G is collapsible if for every even subset R ⊆ V (G), there is a spanning connected subgraph HR of G whose set of odd degree vertices is R. A graph is reduced if it has no nontrivial collapsible subgraphs. Catlin [4] showed that the existence of spanning Eulerian subgraphs in a graph G can be determined by the reduced graph obtained from G by contracting all the collapsible subgraphs of G. In this paper, we present a result on 3-edge-connected reduced graphs of small orders. Then, we prove that a 3-edge-connected graph G of order n either has a spanning Eulerian subgraph or can be contracted to the Petersen graph if G satisfies one of the following: (i) d(u) + d(v) \u3e 2(n/15 − 1) for any uv 6∈ E(G) and n is large; (ii) the size of a maximum matching in G is at most 6; (iii) the independence number of G is at most 5. These are improvements of prior results in [16], [18], [24] and [25]

    Properties of Catlin's reduced graphs and supereulerian graphs

    Get PDF
    A graph GG is called collapsible if for every even subset R⊆V(G)R\subseteq V(G), there is a spanning connected subgraph HH of GG such that RR is the set of vertices of odd degree in HH. A graph is the reduction of GG if it is obtained from GG by contracting all the nontrivial collapsible subgraphs. A graph is reduced if it has no nontrivial collapsible subgraphs. In this paper, we first prove a few results on the properties of reduced graphs. As an application, for 3-edge-connected graphs GG of order nn with d(u)+d(v)≥2(n/p−1)d(u)+d(v)\ge 2(n/p-1) for any uv∈E(G)uv\in E(G) where p>0p>0 are given, we show how such graphs change if they have no spanning Eulerian subgraphs when pp is increased from p=1p=1 to 10 then to 1515

    Lai’s conditions for spanning and dominating closed trails

    Get PDF
    • …
    corecore