3,492 research outputs found

    Controlling Chaos in a Neural Network Based on the Phase Space Constraint

    Get PDF
    The chaotic neural network constructed with chaotic neurons exhibits very rich dynamic behaviors and has a nonperiodic associative memory. In the chaotic neural network, however, it is dicult to distinguish the stored patters from others, because the states of output of the network are in chaos. In order to apply the nonperiodic associative memory into information search and pattern identication, etc, it is necessary to control chaos in this chaotic neural network. In this paper, the phase space constraint method focused on the chaotic neural network is proposed. By analyzing the orbital of the network in phase space, we chose a part of states to be disturbed. In this way, the evolutional spaces of the strange attractors are constrained. The computer simulation proves that the chaos in the chaotic neural network can be controlled with above method and the network can converge in one of its stored patterns or their reverses which has the smallest Hamming distance with the initial state of the network. The work claries the application prospect of the associative dynamics of the chaotic neural network

    Searching for Charged Higgs Boson in Polarized Top Quark

    Full text link
    The charged Higgs boson is quite common in many new physics models. In this study we examine the potential of observing a heavy charged Higgs boson in its decay mode of top-quark and bottom-quark in the Type-II Two-Higgs-Doublet-Model. In this model, the chirality structure of the coupling of charged Higgs boson to the top- and bottom-quark is very sensitive to the value of tan⁡β\tan\beta. As the polarization of the top-quark can be measured experimentally from the top-quark decay products, one could make use of the top-quark polarization to determine the value of tan⁡β\tan\beta. We preform a detailed analysis of measuring top-quark polarization in the production channels gb→tH−gb\to tH^- and gbˉ→tˉH+g\bar{b}\to \bar{t}H^+. We calculate the helicity amplitudes of the charged Higgs boson production and decay.Our calculation shows that the top-quark from the charged Higgs boson decay provides a good probe for measuring tan⁡β\tan\beta, especially for the intermediate tan⁡β\tan\beta region. On the contrary, the top-quark produced in association with the charged Higgs boson cannot be used to measure tan⁡β\tan\beta because its polarization is highly contaminated by the tt-channel kinematics.Comment: 21 pages, 12 figures, 2 table

    Substructuring Method in Structural Health Monitoring

    Get PDF
    In sensitivity-based finite element model updating, the eigensolutions and eigensensitivities are calculated repeatedly, which is a time-consuming process for large-scale structures. In this chapter, a forward substructuring method and an inverse substructuring method are proposed to fulfill the model updating of large-scale structures. In the forward substructuring method, the analytical FE model of the global structure is divided into several independent substructures. The eigensolutions of each independent substructure are used to recover the eigensolutions and eigensensitivities of the global structure. Consequently, only some specific substructures are reanalyzed in model updating and assembled with other untouched substructures to recover the eigensolutions and eigensensitivities of the global structure. In the inverse substructuring method, the experimental modal data of the global structure are disassembled into substructural flexibility. Afterwards, each substructure is treated as an independent structure to reproduce its flexibility through a model-updating process. Employing the substructuring method, the model updating of a substructure can be conducted by measuring the local area of the concerned substructure solely. Finally, application of the proposed methods to a laboratory tested frame structure reveals that the forward and inverse substructuring methods are effective in model updating and damage identification
    • …
    corecore