637 research outputs found

    Local Differentially Private Heavy Hitter Detection in Data Streams with Bounded Memory

    Full text link
    Top-kk frequent items detection is a fundamental task in data stream mining. Many promising solutions are proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-kk items. Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task without proper protection, since their contributed local data streams may continually leak sensitive individual information. However, most existing works solely focus on addressing either the memory-efficiency problem or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory efficiency, privacy protection, and detection accuracy. In this paper, we present a novel framework HG-LDP to achieve accurate Top-kk item detection at bounded memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques will lead to an inferior ``accuracy-privacy-memory efficiency'' tradeoff. Therefore, we instantiate three advanced schemes under the framework by designing novel LDP randomization methods, which address the hurdles caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a superior ``accuracy-privacy-memory efficiency'' tradeoff, saving 2300×2300\times memory over baseline methods when the item domain size is 41,27041,270. Our code is open-sourced via the link

    Empowering AI drug discovery with explicit and implicit knowledge

    Full text link
    Motivation: Recently, research on independently utilizing either explicit knowledge from knowledge graphs or implicit knowledge from biomedical literature for AI drug discovery has been growing rapidly. These approaches have greatly improved the prediction accuracy of AI models on multiple downstream tasks. However, integrating explicit and implicit knowledge independently hinders their understanding of molecules. Results: We propose DeepEIK, a unified deep learning framework that incorporates both explicit and implicit knowledge for AI drug discovery. We adopt feature fusion to process the multi-modal inputs, and leverage the attention mechanism to denoise the text information. Experiments show that DeepEIK significantly outperforms state-of-the-art methods on crucial tasks in AI drug discovery including drug-target interaction prediction, drug property prediction and protein-protein interaction prediction. Further studies show that benefiting from explicit and implicit knowledge, our framework achieves a deeper understanding of molecules and shows promising potential in facilitating drug discovery applications.Comment: Bioinformatic

    GUC-Secure Commitments via Random Oracles: New Impossibility and Feasibility

    Get PDF
    In the UC framework, protocols must be subroutine respecting; therefore, shared trusted setup might cause security issues. To address this drawback, Generalized UC (GUC) framework is introduced by Canetti \emph{et al.} (TCC 2007). In this work, we investigate the impossibility and feasibility of GUC-secure commitments using global random oracles (GRO) as the trusted setup. In particular, we show that it is impossible to have a 2-round (1-round committing and 1-round opening) GUC-secure commitment in the global observable RO model by Canetti \emph{et al.} (CCS 2014). We then give a new round-optimal GUC-secure commitment that uses only Minicrypt assumptions (i.e. the existence of one-way functions) in the global observable RO model. Furthermore, we also examine the complete picture on round complexity of the GUC-secure commitments in various global RO models

    Endemic Oblivious Transfer via Random Oracles, Revisited

    Get PDF
    The notion of Endemic Oblivious Transfer (EOT) was introduced by Masny and Rindal (CCS\u2719). EOT offers a weaker security guarantee than the conventional random OT; namely, the malicious parties can fix their outputs arbitrarily. The authors presented a 1-round UC-secure EOT protocol under a tailor-made and non-standard assumption, Choose-and-Open DDH, in the RO model. In this work, we systematically study EOT in the UC/GUC framework. We present a new 1-round UC-secure EOT construction in the RO model under the DDH assumption. Under the GUC framework, we propose the first 1-round EOT construction under the CDH assumption in the Global Restricted Observable RO (GroRO) model proposed by Canetti et al. (CCS\u2714). We also provide an impossibility result, showing there exist no 1-round GUC-secure EOT protocols in the Global Restricted Programmable RO (GrpRO) model proposed by Camenisch et al. (Eurocrypt\u2718). Subsequently, we provide the first round-optimal (2-round) EOT protocol with adaptive security under the DDH assumption in the GrpRO model. Finally, we investigate the relations between EOT and other cryptographic primitives. As side products, we present the first 2-round GUC-secure commitment in the GroRO model as well as a separation between the GroRO and the GrpRO models, which may be of independent interest

    In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans

    Get PDF
    BACKGROUND: Currently available vaccines against leptospirosis are of low efficacy, have an unacceptable side-effect profile, do not induce long-term protection, and provide no cross-protection against the different serovars of pathogenic leptospira. The current major focus in leptospirosis research is to discover conserved protective antigens that may elicit longer-term protection against a broad range of Leptospira. There is a need to screen vaccine candidate genes in the genome of Leptospira interrogans. RESULTS: Bioinformatics, comparative genomic hybridization (CGH) analysis and transcriptional analysis were used to identify vaccine candidates in the genome of L. interrogans serovar Lai strain #56601. Of a total of 4727 open reading frames (ORFs), 616 genes were predicted to encode surface-exposed proteins by P-CLASSIFIER combined with signal peptide prediction, α-helix transmembrane topology prediction, integral β-barrel outer membrane protein and lipoprotein prediction, as well as by retaining the genes shared by the two sequenced L. interrogans genomes and by subtracting genes with human homologues. A DNA microarray of L. interrogans strain #56601 was constructed for CGH analysis and transcriptome analysis in vitro. Three hundred and seven differential genes were identified in ten pathogenic serovars by CGH; 1427 genes had high transcriptional levels (Cy3 signal ≥ 342 and Cy5 signal ≥ 363.5, respectively). There were 565 genes in the intersection between the set encoding surface-exposed proteins and the set of 307 differential genes. The number of genes in the intersection between this set of 565 and the set of 1427 highly transcriptionally active genes was 226. These 226 genes were thus identified as putative vaccine candidates. The proteins encoded by these genes are not only potentially surface-exposed in the bacterium, but also conserved in two sequenced L. interrogans. Moreover, these genes are conserved among ten epidemic serovars in China and have high transcriptional levels in vitro. CONCLUSION: Of the 4727 ORFs in the genome of L. interrogans, 226 genes were identified as vaccine candidates by bioinformatics, CGH and transcriptional analysis on the basis of the theory of reverse vaccinology. The proteins encoded by these genes might be useful as vaccine candidates as well as for diagnosis of leptospirosis
    • …
    corecore