12,367 research outputs found

    Periodic Radio Variability in NRAO 530: Phase Dispersion Minimization Analysis

    Full text link
    In this paper, a periodicity analysis of the radio light curves of the blazar NRAO 530 at 14.5, 8.0, and 4.8 GHz is presented employing an improved Phase Dispersion Minimization (PDM) technique. The result, which shows two persistent periodic components of ∼6 \sim 6 and ∼10 \sim 10 years at all three frequencies, is consistent with the results obtained with the Lomb-Scargle periodogram and weighted wavelet Z-transform algorithms. The reliability of the derived periodicities is confirmed by the Monte Carlo numerical simulations which show a high statistical confidence. (Quasi-)Periodic fluctuations of the radio luminosity of NRAO 530 might be associated with the oscillations of the accretion disk triggered by hydrodynamic instabilities of the accreted flow. \keywords{methods: statistical -- galaxies: active -- galaxies: quasar: individual: NRAO 530}Comment: 8 pages, 5 figures, accepted by RA

    MIMO Channel Information Feedback Using Deep Recurrent Network

    Get PDF
    In a multiple-input multiple-output (MIMO) system, the availability of channel state information (CSI) at the transmitter is essential for performance improvement. Recent convolutional neural network (NN) based techniques show competitive ability in realizing CSI compression and feedback. By introducing a new NN architecture, we enhance the accuracy of quantized CSI feedback in MIMO communications. The proposed NN architecture invokes a module named long short-term memory (LSTM) which admits the NN to benefit from exploiting temporal and frequency correlations of wireless channels. Compromising performance with complexity, we further modify the NN architecture with a significantly reduced number of parameters to be trained. Finally, experiments show that the proposed NN architectures achieve better performance in terms of both CSI compression and recovery accuracy

    Different critical points of chiral and deconfinement phase transitions in (2+1)-dimensional fermion-gauge interacting model

    Get PDF
    Based on the truncated Dyson-Schwinger equations for fermion and massive boson propagators in QED3_3, the fermion chiral condensate and the mass singularities of the fermion propagator via the Schwinger function are investigated. It is shown that the critical point of chiral phase transition is apparently different from that of deconfinement phase transition and in Nambu phase the fermion is confined only for small gauge boson mass.Comment: 5 Pages and 3 figure
    • …
    corecore