4,543 research outputs found

    Graphene-enhanced raman spectroscopy reveals the controlled photoreduction of nitroaromatic compound on oxidized graphene surface

    Get PDF
    Although graphene-enhanced Raman spectroscopy has been investigated for several years, there have been no studies that have applied it to real-time observations of chemical catalytic reactions. Here, we report that UV/ozone-treated oxidized graphene was used to both control and monitor the photoreduction of an adsorbed nitroaromatic dye compound. Graphene-enhanced Raman spectroscopy studies show that more oxidized graphene surface leads to faster photoreduction. This is due to the lowering of the Fermi level in the oxidized graphene, which is in agreement with the highest occupied molecular orbital level of the adsorbed dye molecule, leading to a rapid electron transfer from graphene to the dye. Our findings will be useful in understanding and exploiting the photocatalytic properties of oxidized graphene on adsorbed molecular species.

    Surgical experience of pericardial mesothelioma presenting as constrictive pericarditis

    Get PDF
    SummaryWe report two cases, which had been initially diagnosed with constrictive pericarditis but later were definitely diagnosed with mesothelioma after receiving pericardiectomy. The two patients complained of dyspnea. Chest computed tomography showed mild pericardial effusion and thickened pericardium, which was found enveloping the heart without any lumps. Pericardiectomy (phrenic nerve to phrenic nerve) was performed and post-operative histology confirmed malignant mesothelioma. One patient had recurrence near the pericardium at 7 months post-operatively and died at 11 months post-operatively. Another patient, after receiving chemotherapy, is still alive at 16 months post-operatively. We consider that pericardial mesothelioma, an extremely rare disease exhibiting clinical signs similar to those of constrictive pericarditis, must be diagnosed at the early stage of its onset

    Robust Co-catalytic Performance of Nanodiamonds Loaded on WO3 for the Decomposition of Volatile Organic Compounds under Visible Light

    Get PDF
    Proper co-catalysts (usually noble metals), combined with semiconductor materials, are commonly needed to maximize the efficiency of photocatalysis. Search for cost-effective and practical alternatives for noble-metal co-catalysts is under intense investigation. In this work, nanodiamond (ND), which is a carbon nanomaterial with a unique sp(3)(core)/sp(2)(shell) structure, was combined with WO3 (as an alternative co-catalyst for Pt) and applied for the degradation of volatile organic compounds under visible light. NDs-loaded WO3 showed a highly enhanced photocatalytic activity for the degradation of acetaldehyde (similar to 17 times higher than bare WO3), which is more efficient than other well-known co-catalysts (Ag, Pd, Au, and CuO) loaded onto WO3 and comparable to Pt-loaded WO3. Various surface modifications of ND and photoelectochemical measurements revealed that the graphitic carbon shell (sp(2)) on the diamond core (spa) plays a crucial role in charge separation and the subsequent interfacial charge transfer. As a result, ND/WO3 showed much higher production of OH radicals than bare WO3 under visible light. Since ND has a highly transparent characteristic, the light shielding that is often problematic with other carbon-based co-catalysts was considerably lower with NDs-loaded WO3. As a result, the photocatalytic activity of NDs/WO3 was higher than that of WO3 loaded with other carbon-based co-catalysts (graphene oxide or reduced graphene oxide). A range of spectroscopic and photo(electro)chemical techniques were systematically employed to investigate the properties of NDs-loaded WO3. ND is proposed as a cost-effective and practical nanomaterial to replace expensive noble-metal co-catalysts.1124Ysciescopu

    Optical Probing of Electronic Interaction between Graphene and Hexagonal Boron Nitride

    Full text link
    Even weak van der Waals (vdW) adhesion between two-dimensional solids may perturb their various materials properties owing to their low dimensionality. Although the electronic structure of graphene has been predicted to be modified by the vdW interaction with other materials, its optical characterization has not been successful. In this report, we demonstrate that Raman spectroscopy can be utilized to detect a few % decrease in the Fermi velocity (vF) of graphene caused by the vdW interaction with underlying hexagonal boron nitride (hBN). Our study also establishes Raman spectroscopic analysis which enables separation of the effects by the vdW interaction from those by mechanical strain or extra charge carriers. The analysis reveals that spectral features of graphene on hBN are mainly affected by change in vF and mechanical strain, but not by charge doping unlike graphene supported on SiO2 substrates. Graphene on hBN was also found to be less susceptible to thermally induced hole doping.Comment: 19 pages, 4 figure

    Serial Magnetic Resonance Imagings of Multiple Brain Abscesses in a Patient with Pneumococcal Meningoencephalitis

    Get PDF
    We report a 43-yr-old man manifesting bacterial meningoencephalitis and multiple abscesses by Streptococcus pneumoniae. Serial magnetic resonance (MR) imagings and MR spectroscopy showed the evolution of multiple brain abscesses over 4 weeks: the enhanced rings became thicker and the dimension of whole lesions larger despite shrinkage of the ring-enhanced regions. These findings may be evidence of active inflammation working to sequestrate the lesion and protect the surrounding normal brain parenchyma from additional damage, even in the final stage of the brain abscess

    Model eye imaging by closed-loop accumulation of single scattering (CLASS) microscopy

    Get PDF
    ‘Closed-loop accumulation of single scattering (CLASS)’ microscopy provides novel solutions to the problems of light scattering and aberration in optical imaging, providing increased imaging depth while maintaining diffraction limited resolution. This method has a great potential to increase imaging depth and resolution of current eye imaging. In this presentation, the strength and weakness of the CLASS microscopy over the current adaptive optical microscopy will be discussed. Important factors to apply CLASS microscopy to eye imaging and the possibility to imaging retina in turbid condition will be discussed by using model eye

    mtCO1-based population structure and genetic diversity of Pacific oyster *Crassostrea gigas* populations acquired from two farms in South Korea

    Get PDF
    Since the early 1990s in South Korea, climatic and anthropogenic factors have incurred the reduction of the wild seeds of the Pacific oyster, Crassostrea gigas, which raised concerns about losing genetic diversity and accelerating genetic deterioration. We assessed the genetic diversity of C. gigas populations from two farms (Tongyeong and Gadeokdo) on the southern coast, where about 80% of the cultivated oysters in Korea are produced. Tongyeong showed slightly higher diversity than Gadeokdo, but both populations had a similar genetic structure characterized by low nucleotide diversity. Comparative haplotype analyses provided data supporting genetic features of the populations that include (1) weak genotype-locality relationship, (2) low levels of gene flow between populations, and (3) possible seasonal fluctuation of genetic variation within a population. Furthermore, the highly alike haplotype network patterns were observed between the wild and farm populations as well as among the populations in neighboring countries, which suggests that the genetic structure is conserved between wild and hatchery populations, and geographic proximity has minimal influence on the genetic composition
    corecore