17,569 research outputs found

    The equation of state for scalar-tensor gravity

    Full text link
    We show that the field equation of Brans-Dicke gravity and scalar-tensor gravity can be derived as the equation of state of Rindler spacetime, where the local thermodynamic equilibrium is maintained. Our derivation implies that the effective energy can not feel the heat flow across the Rindler horizon.Comment: 6 pages, to be published in Prog. Theor. Phy

    Two dimensional numerical simulations of Supercritical Accretion Flows revisited

    Full text link
    We study the dynamics of super-Eddington accretion flows by performing two-dimensional radiation-hydrodynamic simulations. Compared with previous works, in this paper we include the TθϕT_{\theta\phi} component of the viscous stress and consider various values of the viscous parameter α\alpha. We find that when TθϕT_{\theta\phi} is included, the rotational speed of the high-latitude flow decreases, while the density increases and decreases at the high and low latitudes, respectively. We calculate the radial profiles of inflow and outflow rates. We find that the inflow rate decreases inward, following a power law form of M˙inrs\dot{M}_{\rm in}\propto r^s. The value of ss depends on the magnitude of α\alpha and is within the range of 0.41.0\sim 0.4-1.0. Correspondingly, the radial profile of density becomes flatter compared with the case of a constant M˙(r)\dot{M}(r). We find that the density profile can be described by ρ(r)rp\rho(r)\propto r^{-p}, and the value of pp is almost same for a wide range of α\alpha ranging from α=0.1\alpha=0.1 to 0.0050.005. The inward decrease of inflow accretion rate is very similar to hot accretion flows, which is attributed to the mass loss in outflows. To study the origin of outflow, we analyze the convective stability of slim disk. We find that depending on the value of α\alpha, the flow is marginally stable (when α\alpha is small) or unstable (when α\alpha is large). This is different from the case of hydrodynamical hot accretion flow where radiation is dynamically unimportant and the flow is always convectively unstable. We speculate that the reason for the difference is because radiation can stabilize convection. The origin of outflow is thus likely because of the joint function of convection and radiation, but further investigation is required.Comment: 16 pages, 13 figures, accepted for publication in Ap

    Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors

    Full text link
    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (TT) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-TT resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation dρ/dT=(μ0kB/)λL2d\rho/dT=(\mu_0k_B/\hbar)\lambda^2_L, which bridges the slope of the linear-TT-dependent resistivity (dρ/dTd\rho/dT) to the London penetration depth λL\lambda_L at zero temperature among cuprate superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} and heavy fermion superconductors CeCoIn5_5, where μ0\mu_0 is vacuum permeability, kBk_B is the Boltzmann constant and \hbar is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (DD) approaching the quantum limit D/mD\sim\hbar/m^*, where mm^* is the quasi-particle effective mass.Comment: 8 pages, 2 figures, 1 tabl
    corecore