966 research outputs found

    Periodic Radio Variability in NRAO 530: Phase Dispersion Minimization Analysis

    Full text link
    In this paper, a periodicity analysis of the radio light curves of the blazar NRAO 530 at 14.5, 8.0, and 4.8 GHz is presented employing an improved Phase Dispersion Minimization (PDM) technique. The result, which shows two persistent periodic components of 6 \sim 6 and 10 \sim 10 years at all three frequencies, is consistent with the results obtained with the Lomb-Scargle periodogram and weighted wavelet Z-transform algorithms. The reliability of the derived periodicities is confirmed by the Monte Carlo numerical simulations which show a high statistical confidence. (Quasi-)Periodic fluctuations of the radio luminosity of NRAO 530 might be associated with the oscillations of the accretion disk triggered by hydrodynamic instabilities of the accreted flow. \keywords{methods: statistical -- galaxies: active -- galaxies: quasar: individual: NRAO 530}Comment: 8 pages, 5 figures, accepted by RA

    Enhance synchronizability via age-based coupling

    Full text link
    In this brief report, we study the synchronization of growing scale-free networks. An asymmetrical age-based coupling method is proposed with only one free parameter α\alpha. Although the coupling matrix is asymmetric, our coupling method could guarantee that all the eigenvalues are non-negative reals. The eigneratio R will approach to 1 in the large limit of α\alpha.Comment: 3 pages, 1 figur

    A Dual-modality Smartphone Microendoscope for Quantifying the Physiological and Morphological Properties of Epithelial Tissues

    Get PDF
    We report a nonconcurrent dual-modality fiber-optic microendoscope (named SmartME) that integrates quantitative diffuse reflectance spectroscopy (DRS) and high-resolution fluorescence imaging (FLI) into a smartphone platform. The FLI module has a spatial resolution of ~3.5 µm, which allows the determination of the nuclear-cytoplasmic ratio (N/C) of epithelial tissues. The DRS has a spectral resolution of ~2 nm and can measure the total hemoglobin concentration (THC) and scattering properties of epithelial tissues with mean errors of 4.7% and 6.9%, respectively, which are comparable to the errors achieved with a benchtop spectrometer. Our preliminary in vivo studies from a single healthy human subject demonstrate that the SmartME can noninvasively quantify the tissue parameters of normal human oral mucosa tissues, including labial mucosa tissue, gingival tissue, and tongue dorsum tissue. The THCs of the three oral mucosa tissues are significantly different from each other (p ≤ 0.003). The reduced scattering coefficients of the gingival and labial tissues are significantly different from those of the tongue dorsum tissue (p \u3c 0.001) but are not significantly different from each other. The N/Cs for all three tissue types are similar. The SmartME has great potential to be used as a portable, cost-effective, and globally connected tool to quantify the THC and scattering properties of tissues in vivo

    Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement Learning with Continuous Action Horizon

    Full text link
    Decision-making strategy for autonomous vehicles de-scribes a sequence of driving maneuvers to achieve a certain navigational mission. This paper utilizes the deep reinforcement learning (DRL) method to address the continuous-horizon decision-making problem on the highway. First, the vehicle kinematics and driving scenario on the freeway are introduced. The running objective of the ego automated vehicle is to execute an efficient and smooth policy without collision. Then, the particular algorithm named proximal policy optimization (PPO)-enhanced DRL is illustrated. To overcome the challenges in tardy training efficiency and sample inefficiency, this applied algorithm could realize high learning efficiency and excellent control performance. Finally, the PPO-DRL-based decision-making strategy is estimated from multiple perspectives, including the optimality, learning efficiency, and adaptability. Its potential for online application is discussed by applying it to similar driving scenarios.Comment: 9 pages, 10 figure

    Ethyl 2-methyl-6-(propan-2-yl­amino)-4-sulfanyl­idene-3H,11H-pyrimido[1,6-c]quinazoline-1-carboxyl­ate

    Get PDF
    The title compound, C18H22N4O2S, contains a substituted pyrimidine ring fused to both a benzene ring and a substituted thioxopyrimidine ring. The pyrimidine and thioxopyrimidine rings adopt distorted chair conformations. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯S and N—H⋯O hydrogen bonds to generate centrosymmetric R 2 2(8) and R 2 2(16) loops, respectively. This combination leads to [100] chains of mol­ecules

    A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. IV. Spectral Lag and its Relation to E p Evolution

    Full text link
    The spectral evolution and spectral lag behavior of 92 bright pulses from 84 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor (GBM) telescope are studied. These pulses can be classified into hard-to-soft pulses (H2S; 64/92), H2S-dominated-tracking pulses (21/92), and other tracking pulses (7/92). We focus on the relationship between spectral evolution and spectral lags of H2S and H2S-dominated-tracking pulses. The main trend of spectral evolution (lag behavior) is estimated with ( ), where E p is the peak photon energy in the radiation spectrum, t + t 0 is the observer time relative to the beginning of pulse −t 0, and is the spectral lag of photons with energy E with respect to the energy band 8–25 keV. For H2S and H2S-dominated-tracking pulses, a weak correlation between and k E is found, where W is the pulse width. We also study the spectral lag behavior with peak time of pulses for 30 well-shaped pulses and estimate the main trend of the spectral lag behavior with . It is found that is correlated with k E . We perform simulations under a phenomenological model of spectral evolution, and find that these correlations are reproduced. We then conclude that spectral lags are closely related to spectral evolution within the pulse. The most natural explanation of these observations is that the emission is from the electrons in the same fluid unit at an emission site moving away from the central engine, as expected in the models invoking magnetic dissipation in a moderately high-σ outflow

    A comprehensive analysis of Fermi Gamma-Ray Burst Data: IV. Spectral lag and Its Relation to Ep Evolution

    Full text link
    The spectral evolution and spectral lag behavior of 92 bright pulses from 84 gamma-ray bursts (GRBs) observed by the Fermi GBM telescope are studied. These pulses can be classified into hard-to-soft pulses (H2S, 64/92), H2S-dominated-tracking pulses (21/92), and other tracking pulses (7/92). We focus on the relationship between spectral evolution and spectral lags of H2S and H2S-dominated-tracking pulses. %in hard-to-soft pulses (H2S, 64/92) and H2S-dominating-tracking (21/92) pulses. The main trend of spectral evolution (lag behavior) is estimated with logEpkElog(t+t0)\log E_p\propto k_E\log(t+t_0) (τ^kτ^logE{\hat{\tau}} \propto k_{\hat{\tau}}\log E), where EpE_p is the peak photon energy in the radiation spectrum, t+t0t+t_0 is the observer time relative to the beginning of pulse t0-t_0, and τ^{\hat{\tau}} is the spectral lag of photons with energy EE with respect to the energy band 88-2525 keV. For H2S and H2S-dominated-tracking pulses, a weak correlation between kτ^/Wk_{{\hat{\tau}}}/W and kEk_E is found, where WW is the pulse width. We also study the spectral lag behavior with peak time tpEt_{\rm p_E} of pulses for 30 well-shaped pulses and estimate the main trend of the spectral lag behavior with logtpEktplogE\log t_{\rm p_E}\propto k_{t_p}\log E. It is found that ktpk_{t_p} is correlated with kEk_E. We perform simulations under a phenomenological model of spectral evolution, and find that these correlations are reproduced. We then conclude that spectral lags are closely related to spectral evolution within the pulse. The most natural explanation of these observations is that the emission is from the electrons in the same fluid unit at an emission site moving away from the central engine, as expected in the models invoking magnetic dissipation in a moderately-high-σ\sigma outflow.Comment: 58 pages, 11 figures, 3 tables. ApJ in pres

    Absorption Cross Sections of NH_3, NH_2D, NHD_2, and ND_3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation

    Get PDF
    Cross sections for photoabsorption of NH_3, NH_2D, NHD_2, and ND_3 in the spectral region 140-220 nm were determined at ~298 K using synchrotron radiation. Absorption spectra of NH_2D and NHD_2 were deduced from spectra of mixtures of NH_3 and ND_3, of which the equilibrium concentrations for all four isotopologues obey statistical distributions. Cross sections of NH_2D, NHD_2, and ND_3 are new. Oscillator strengths, an integration of absorption cross sections over the spectral lines, for both A ← X and B ← X systems of NH_3 agree satisfactorily with previous reports; values for NH_2D, NHD_2, and ND_3 agree with quantum chemical predictions. The photolysis of NH_3 provides a major source of reactive hydrogen in the lower stratosphere and upper troposphere of giant planets such as Jupiter. Incorporating the measured photoabsorption cross sections of NH_3 and NH_2D into the Caltech/JPL photochemical diffusive model for the atmosphere of Jupiter, we find that the photolysis efficiency of NH_2D is lower than that of NH_3 by as much as 30%. The D/H ratio in NH_2D/NH_3 for tracing the microphysics in the troposphere of Jupiter is also discussed
    corecore