39,004 research outputs found

    Isospin particle on S2S^{2} with arbitrary number of supersymmetries

    Get PDF
    We study the supersymmetric quantum mechanics of an isospin particle in the background of spherically symmetric Yang-Mills gauge field. We show that on S2S^{2} the number of supersymmetries can be made arbitrarily large for a specific choice of the spherically symmetric SU(2) gauge field. However, the symmetry algebra containing the supercharges becomes nonlinear if the number of fermions is greater than two. We present the exact energy spectra and eigenfunctions, which can be written as the product of monopole harmonics and a certain isospin state. We also find that the supersymmetry is spontaneously broken if the number of supersymmetries is even.Comment: 6 page

    CP1CP^{1} model with Hopf term and fractional spin statistics

    Get PDF
    We reconsider the CP1CP^{1} model with the Hopf term by using the Batalin-Fradkin-Tyutin (BFT) scheme, which is an improved version of the Dirac quantization method. We also perform a semi-classical quantization of the topological charge Q sector by exploiting the collective coordinates to explicitly show the fractional spin statistics.Comment: 15 page

    General one-loop formulas for decay h→Zγh\rightarrow Z\gamma

    Full text link
    Radiative corrections to the h→Zγh\rightarrow Z\gamma are evaluated in the one-loop approximation. The unitary gauge gauge is used. The analytic result is expressed in terms of the Passarino-Veltman functions. The calculations are applicable for the Standard Model as well for a wide class of its gauge extensions. In particular, the decay width of a charged Higgs boson H±→W±γH^\pm \rightarrow W^\pm\gamma can be derived. The consistence of our formulas and several specific earlier results is shown.Comment: 33 pages, 3 figures, a new section (V) and references were improved in the published versio

    Flavor symmetry breaking effects on SU(3) Skyrmion

    Get PDF
    We study the massive SU(3) Skyrmion model to investigate the flavor symmetry breaking (FSB) effects on the static properties of the strange baryons in the framework of the rigid rotator quantization scheme combined with the improved Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB kinetic terms are shown to improve cc the ratio of the strange-light to light-light interaction strengths and cˉ\bar{c} that of the strange-strange to light-light.Comment: 12 pages, latex, no figure

    Effect of edge transmission and elastic scattering on the resistance of magnetic barriers

    Full text link
    Strong magnetic barriers are defined in two-dimensional electron gases by magnetizing dysprosium ferromagnetic platelets on top of a Ga[Al]As heterostructure. A small resistance across the barrier is observed even deep inside the closed regime. We have used semiclassical simulations to explain this behavior quantitatively in terms of a combined effect of elastic electron scattering inside the barrier region and E x B drift at the intersection of the magnetic barrier with the edge of the Hall bar.Comment: 7 pages 4 figure

    Mass Terms in Effective Theories of High Density Quark Matter

    Get PDF
    We study the structure of mass terms in the effective theory for quasi-particles in QCD at high baryon density. To next-to-leading order in the 1/pF1/p_F expansion we find two types of mass terms, chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Sch\"afer. We show that to leading order in the coupling constant gg there is no anti-particle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure

    Discrete Anomaly and Dynamical Mass in 2+1 dimensional U(1)VĂ—U(1)AU(1)_V\times U(1)_A Model

    Full text link
    We note that in (2+1)-dimensional gauge theories with even number of massless fermions, there is anomalous Z2Z_2 symmetry if theory is regularized in a parity-invariant way. We then consider a parity invariant U(1)VĂ—U(1)AU(1)_V\times U(1)_A model, which induces a mutual Chern-Simons term in the effective action due to Z2Z_2 anomaly. The effect of the discrete anomaly is studied in the induced spin and in the dynamical fermion mass.Comment: 14 pages, latex, two figures (available upon request

    High Density Effective Theory Confronts the Fermi Liquid

    Full text link
    The high density effective theory recently introduced by Hong and Hsu to describe ultradense relativistic fermionic matter is used to calculate the tree-level forward scattering amplitude between two particles at the Fermi surface. While the direct term correctly reproduces that of the underlying gauge theory, the exchange term has the wrong sign. The physical consequences are discussed in the context of Landau's theoretical description of the Fermi liquid.Comment: 15 pages, 2 figures; conclusion expanded, reference adde

    Exploring complex networks by walking on them

    Full text link
    We carry out a comparative study on the problem for a walker searching on several typical complex networks. The search efficiency is evaluated for various strategies. Having no knowledge of the global properties of the underlying networks and the optimal path between any two given nodes, it is found that the best search strategy is the self-avoid random walk. The preferentially self-avoid random walk does not help in improving the search efficiency further. In return, topological information of the underlying networks may be drawn by comparing the results of the different search strategies.Comment: 5 pages, 5 figure
    • …
    corecore