1,372 research outputs found
Condensation of Hard Spheres Under Gravity: Exact Results in One Dimension
We present exact results for the density profile of the one dimensional array
of N hard spheres of diameter D and mass m under gravity g. For a strictly one
dimensional system, the liquid-solid transition occurs at zero temperature,
because the close-pakced density, , is one. However, if we relax this
condition slightly such that , we find a series of critical
temperatures T_c^i=mgD(N+1-i)/\mu_o with \mu_o=const, at which the i-th
particle undergoes the liquid-solid transition. The functional form of the
onset temperature, T_c^1=mgDN/\mu_o, is consistent with the previous result
[Physica A 271, 192 (1999)] obtained by the Enskog equation. We also show that
the increase in the center of mass is linear in T before the transition, but it
becomes quadratic in T after the transition because of the formation of solid
near the bottom
Liquid-Solid Transition of Hard Spheres Under Gravity
We investigate the liquid-solid transition of two dimensional hard spheres in
the presence of gravity. We determine the transition temperature and the
fraction of particles in the solid regime as a function of temperature via
Even-Driven molecular dynamics simulations and compare them with the
theoretical predictions. We then examine the configurational statistics of a
vibrating bed from the view point of the liquid-solid transition by explicitly
determining the transition temperature and the effective temperature, T, of the
bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure
A black ring with a rotating 2-sphere
We present a solution of the vacuum Einstein's equations in five dimensions
corresponding to a black ring with horizon topology S^1 x S^2 and rotation in
the azimuthal direction of the S^2. This solution has a regular horizon up to a
conical singularity, which can be placed either inside the ring or at infinity.
This singularity arises due to the fact that this black ring is not balanced.
In the infinite radius limit we correctly reproduce the Kerr black string, and
taking another limit we recover the Myers-Perry black hole with a single
angular momentum.Comment: 10 page
Vector lattice model for stresses in granular materials
A vector lattice model for stresses in granular materials is proposed. A two
dimensional pile built by pouring from a point is constructed numerically
according to this model. Remarkably, the pile violates the Mohr Coulomb
stability criterion for granular matter, probably because of the inherent
anisotropy of such poured piles. The numerical results are also compared to the
earlier continuum FPA model and the (scalar) lattice -model
Quantum optical coherence tomography with dispersion cancellation
We propose a new technique, called quantum optical coherence tomography
(QOCT), for carrying out tomographic measurements with dispersion-cancelled
resolution. The technique can also be used to extract the frequency-dependent
refractive index of the medium. QOCT makes use of a two-photon interferometer
in which a swept delay permits a coincidence interferogram to be traced. The
technique bears a resemblance to classical optical coherence tomography (OCT).
However, it makes use of a nonclassical entangled twin-photon light source that
permits measurements to be made at depths greater than those accessible via
OCT, which suffers from the deleterious effects of sample dispersion. Aside
from the dispersion cancellation, QOCT offers higher sensitivity than OCT as
well as an enhancement of resolution by a factor of 2 for the same source
bandwidth. QOCT and OCT are compared using an idealized sample.Comment: 19 pages, 4 figure
Aquatic resources valuation and policies for poverty elimination in the lower Mekong basin: final report volume 1 project implementation and outcomes
This report presents the final outputs of the project on "Aquatic resources valuation and policies for poverty elimination in the Lower Mekong Basin". Volume 1 summarizes the implementation process, outcomes and key lessons of the project. The project was implemented in partnership with the Dept of Fisheries, Cambodia. It was developed to improve understanding of the economic and social values of aquatic resources, as a step towards improving institutional and policy processes in the Lower Mekong Basin so that resource management decisions better reflect the interests of the rural poor.Resource management, Aquatic environment, Living resources, Cambodia, Southeast, Southeast Asia, Mekong R.,
Synchronization in a System of Globally Coupled Oscillators with Time Delay
We study the synchronization phenomena in a system of globally coupled
oscillators with time delay in the coupling. The self-consistency equations for
the order parameter are derived, which depend explicitly on the amount of
delay. Analysis of these equations reveals that the system in general exhibits
discontinuous transitions in addition to the usual continuous transition,
between the incoherent state and a multitude of coherent states with different
synchronization frequencies. In particular, the phase diagram is obtained on
the plane of the coupling strength and the delay time, and ubiquity of
multistability as well as suppression of the synchronization frequency is
manifested. Numerical simulations are also performed to give consistent
results
Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining
The tumor suppressor gene BRCA1 maintains genomic integrity by protecting
cells from the deleterious effects of DNA double-strand breaks (DSBs).
Through its interactions with the checkpoint kinase 2 (Chk2) kinase and
Rad51, BRCA1 promotes homologous recombination, which is typically an
error-free repair process. In addition, accumulating evidence implicates
BRCA1 in the regulation of nonhomologous end-joining (NHEJ), which may
involve precise religation of the DSB ends if they are compatible (i.e.,
error-free repair) or sequence alteration upon rejoining (i.e.,
error-prone or mutagenic repair). However, the precise role of BRCA1 in
regulating these different subtypes of NHEJ is not clear. We provide here
the genetic and biochemical evidence to show that BRCA1 promotes
error-free rejoining of DSBs in human breast carcinoma cells while
suppressing microhomology-mediated error-prone end-joining and restricting
sequence deletion at the break junction during repair. The repair spectrum
in BRCA1-deficient cells was characterized by an increase in the formation
of >2 kb deletions and in the usage of long microhomologies distal to the
break site, compared with wild-type (WT) cells. This error-prone repair
phenotype could also be revealed by disruption of the Chk2 phosphorylation
site of BRCA1, or by expression of a dominant-negative kinase-dead Chk2
mutant in cells with WT BRCA1. We suggest that the differential control of
NHEJ subprocesses by BRCA1, in concert with Chk2, reduces the mutagenic
potential of NHEJ, thereby contributing to the prevention of familial
breast cancers
Density waves in dry granular media falling through a vertical pipe
We report experimental measurements of density waves in granular materials
flowing down in a capillary tube. The density wave regime occurs at
intermediate flow rates between a low density free fall regime and a high
compactness slower flow.Comment: LaTeX file, 17 pages, 6 EPS figures, Phys.Rev.E (Feb.1996
Statistical mechanics of topological phase transitions in networks
We provide a phenomenological theory for topological transitions in
restructuring networks. In this statistical mechanical approach energy is
assigned to the different network topologies and temperature is used as a
quantity referring to the level of noise during the rewiring of the edges. The
associated microscopic dynamics satisfies the detailed balance condition and is
equivalent to a lattice gas model on the edge-dual graph of a fully connected
network. In our studies -- based on an exact enumeration method, Monte-Carlo
simulations, and theoretical considerations -- we find a rich variety of
topological phase transitions when the temperature is varied. These transitions
signal singular changes in the essential features of the global structure of
the network. Depending on the energy function chosen, the observed transitions
can be best monitored using the order parameters Phi_s=s_{max}/M, i.e., the
size of the largest connected component divided by the number of edges, or
Phi_k=k_{max}/M, the largest degree in the network divided by the number of
edges. If, for example the energy is chosen to be E=-s_{max}, the observed
transition is analogous to the percolation phase transition of random graphs.
For this choice of the energy, the phase-diagram in the [,T] plane is
constructed. Single vertex energies of the form
E=sum_i f(k_i), where k_i is the degree of vertex i, are also studied.
Depending on the form of f(k_i), first order and continuous phase transitions
can be observed. In case of f(k_i)=-(k_i+c)ln(k_i), the transition is
continuous, and at the critical temperature scale-free graphs can be recovered.Comment: 12 pages, 12 figures, minor changes, added a new refernce, to appear
in PR
- …