51,965 research outputs found
Quaternion Electromagnetism and the Relation with 2-Spinor Formalism
By using complex quaternion, which is the system of quaternion representation
extended to complex numbers, we show that the laws of electromagnetism can be
expressed much more simply and concisely. We also derive the quaternion
representation of rotations and boosts from the spinor representation of
Lorentz group. It is suggested that the imaginary 'i' should be attached to the
spatial coordinates, and observe that the complex conjugate of quaternion
representation is exactly equal to parity inversion of all physical quantities
in the quaternion. We also show that using quaternion is directly linked to the
two-spinor formalism. Finally, we discuss meanings of quaternion, octonion and
sedenion in physics as n-fold rotationComment: Version published in journal Universe (2019
The temperature dependence of the local tunnelling conductance in cuprate superconductors with competing AF order
Based on the model with proper chosen parameters for describing
the cuprate superconductors, it is found that near the optimal doping at low
temperature (), only the pure d-wave superconductivity (SC) prevails and
the antiferromagnetic (AF) order is completely suppressed. At higher , the
AF order with stripe modulation and the accompanying charge order may emerge,
and they could exist above the SC transition temperature. We calculate the
local differential tunnelling conductance (LDTC) from the local density of
states (LDOS) and show that their energy variations are rather different from
each other as increases. Although the calculated modulation periodicity in
the LDTC/LDOS and bias energy dependence of the Fourier amplitude of LDTC in
the "pseudogap" region are in good agreement with the recent STM experiment
[Vershinin , Science {\bf 303}, 1995 (2004)], we point out that some of
the energy dependent features in the LDTC do not represent the intrinsic
characteristics of the sample
Dynamics of Vortex Core Switching in Ferromagnetic Nanodisks
Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk,
having a single vortex ground state, was investigated by micromagnetic
modeling. When an in-plane magnetic field pulse with an appropriate strength
and duration is applied to the vortex structure, additional two vortices, i.e.,
a circular- and an anti-vortex, are created near the original vortex core.
Sequentially, the vortex-antivortex pair annihilates. A spin wave is created at
the annihilation point and propagated through the entire element; the relaxed
state for the system is the single vortex state with a switched vortex core.Comment: to appear in Appl. Phys. Let
Synthesis and structural characterization of 2Dioxane.2H2O.CuCl2: metal-organic compound with Heisenberg antiferromagnetic S=1/2 chains
A novel organometallic compound 2Dioxane.CuCl2.2H2O has been synthesized and
structurally characterized by X-ray crystallography. Magnetic susceptibility
and zero-field inelastic neutron scattering have also been used to study its
magnetic properties. It turns out that this material is a weakly coupled
one-dimensional S=1/2 Heisenberg antiferromagnetic chain system with chain
direction along the crystallographic c axis and the nearest-neighbor
intra-chain exchange constant J=0.85(4) meV. The next-nearest-neighbor
inter-chain exchange constant J' is also estimated to be 0.05 meV. The observed
magnetic excitation spectrum from inelastic neutron scattering is in excellent
agreement with numerical calculations based on the Muller ansatz.Comment: 4 pages; 5 figure
- …