626 research outputs found

    Identification of parental line specific effects of MLF2 on resistance to coccidiosis in chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MLF2</it> was the candidate gene associated with coccidiosis resistance in chickens. Although single marker analysis supported the association between <it>MLF2</it> and coccidiosis resistance, causative mutation relevant to coccidiosis was not identified yet. Thus, this study suggested segregation analysis of <it>MLF2</it> haplotype and the association test of the other candidate genes using improved data transformation.</p> <p>Results</p> <p>A haplotype probably originated from one parental line was found out of 4 major haplotypes of <it>MLF2</it>. Frequency of this haplotype was 0.2 in parental chickens and its offspring in 12 families. Allele substitution effect of the <it>MLF2</it> haplotype originated from a specific line was associated with increased body weight and fecal egg count explaining coccidiosis resistance. Nevertheless Box-Cox transformation was able to improve normality; association test did not produce obvious different results compared with analysis with log transformed phenotype.</p> <p>Conclusion</p> <p>Allele substitution effect analysis and classification of <it>MLF2</it> haplotype identified the segregation of haplotype associated with coccidiosis resistance. The haplotype originated from a specific parental line was associated with improving disease resistance. Estimating effect of <it>MLF2</it> haplotype on coccidiosis resistance will provide useful information for selecting animals or lines for future study.</p

    Development of a thorium coating on an aluminium substrate by using electrodeposition method and alpha spectroscopy

    Full text link
    A thin coating of thorium on aluminium substrates with the areal density of 110 to 130 ÎĽg/cm2\mu g/cm^2 is developed over a circular area of 22 mm diameter by using the electrodeposition method. An electrodeposition system is fabricated to consist of three components; an anode made of a platinum mesh, a cylindrical-shape vessel to contain the thorium solution, and a cathode in the form of a circular aluminium plate. The aluminium plate is mounted horizontally, and the platinum mesh is connected to an axial rod of an electric motor, mounted vertically and normal to the plane of the aluminium. The electrolyte solution is prepared by dissolving a known-weight thorium nitrate powder in 0.8 M HNO3 and isopropanol. The system is operated either in constant voltage (CV) or constant current (CC) mode. Under the electric field between the anode and cathode, thorium ions were deposited on the aluminium substrate mounted on the cathode. In the CV mode at 320, 360, and 400 V and in the CC mode at 15 mA, thorium films were formed over a circular area of the aluminium substrate. The areal density of thorium coating was measured by detecting emitted alpha particles. The areal density of thorium varied from 80 to 130 ÎĽg/cm2\mu g/cm^2 by changing the deposition time from 10 to 60 min. The results from the CV mode and CC mode are compared, and the radial dependence in the measured areal density is discussed for different modes of the electric field. The developed thorium coatings are to be used in the in-house development of particle detectors, fast neutron converters, targets for thorium fission experiments, and other purposes.Comment: 11 pages, 5 figures, 1 tabl

    Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein

    Get PDF
    AbstractSelenoprotein W (SelW) is expressed in various tissues, particularly in skeletal muscle. We have previously reported that SelW is up-regulated during C2C12 skeletal muscle differentiation and inhibits binding of 14-3-3 to its target proteins. 14-3-3 reduces myogenic differentiation by inhibiting nuclear translocation of transcriptional co-activator with PDZ-binding motif (TAZ). Phosphorylation of TAZ at Ser89 is required for binding to 14-3-3, leading to cytoplasmic retention of TAZ and a delay in myogenic differentiation. Here, we show that myogenic differentiation was delayed in SelW-knockdown C2C12 cells. Down-regulation of SelW also increased TAZ binding to 14-3-3, which eventually resulted in decreasing translocation of TAZ to the nucleus. However, phosphorylation of TAZ at Ser89 was not affected. Although phosphorylation of TAZ at Ser89 was sustained by the phosphatase inhibitor okadaic acid, nuclear translocation of TAZ was increased by ectopic expression of SelW. This result was due to decreased binding of TAZ to 14-3-3. We also found that the interaction between TAZ and MyoD was increased by ectopic expression of SelW. Taken together, these findings strongly demonstrate that SelW enhances C2C12 cell differentiation by inhibiting TAZ binding to 14-3-3

    Comparative Microarray Analysis of Intestinal Lymphocytes following Eimeria acervulina, E. maxima, or E. tenella Infection in the Chicken

    Get PDF
    Relative expression levels of immune- and non-immune-related mRNAs in chicken intestinal intraepithelial lymphocytes experimentally infected with Eimeria acervulina, E. maxima, or E. tenella were measured using a 10K cDNA microarray. Based on a cutoff of >2.0-fold differential expression compared with uninfected controls, relatively equal numbers of transcripts were altered by the three Eimeria infections at 1, 2, and 3 days post-primary infection. By contrast, E. tenella elicited the greatest number of altered transcripts at 4, 5, and 6 days post-primary infection, and at all time points following secondary infection. When analyzed on the basis of up- or down-regulated transcript levels over the entire 6 day infection periods, approximately equal numbers of up-regulated transcripts were detected following E. tenella primary (1,469) and secondary (1,459) infections, with a greater number of down-regulated mRNAs following secondary (1,063) vs. primary (890) infection. On the contrary, relatively few mRNA were modulated following primary infection with E. acervulina (35 up, 160 down) or E. maxima (65 up, 148 down) compared with secondary infection (E. acervulina, 1,142 up, 1,289 down; E. maxima, 368 up, 1,349 down). With all three coccidia, biological pathway analysis identified the altered transcripts as belonging to the categories of “Disease and Disorder” and “Physiological System Development and Function”. Sixteen intracellular signaling pathways were identified from the differentially expressed transcripts following Eimeria infection, with the greatest significance observed following E. acervulina infection. Taken together, this new information will expand our understanding of host-pathogen interactions in avian coccidiosis and contribute to the development of novel disease control strategies

    MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis

    Get PDF
    International audienceAbstractMicroRNAs (miRNAs) are small non-coding RNAs that contribute to host immune response as post-transcriptional regulation. The current study investigated the biological role of the chicken (Gallus gallus) microRNA-200a-3p (gga-miR-200a-3p), using 2 necrotic enteritis (NE) afflicted genetically disparate chicken lines, 6.3 and 7.2, as well as the mechanisms underlying the fundamental signaling pathways in chicken. The expression of gga-miR-200a-3p in the intestinal mucosal layer of NE-induced chickens, was found to be upregulated during NE infection in the disease-susceptible chicken line 7.2. To validate the target genes, we performed an overexpression analysis of gga-miR-200a-3p using chemically synthesized oligonucleotides identical to gga-miR-200a-3p, reporter gene analysis including luciferase reporter assay, and a dual fluorescence reporter assay in cultured HD11 chicken macrophage cell lines. Gga-miR-200a-3p was observed to be a direct transcriptional repressor of ZAK, MAP2K4, and TGFβ2 that are involved in mitogen-activated protein kinase (MAPK) pathway by targeting the 3′-UTR of their transcripts. Besides, gga-miR-200a-3p may indirectly affect the expression of protein kinases including p38 and ERK1/2 at both transcriptional and translational levels, suggesting that this miRNA may function as an important regulator of the MAPK signaling pathway. Proinflammatory cytokines consisting of IL-1β, IFN-γ, IL-12p40, IL-17A, and LITAF belonging to Th1 and Th17-type cytokines, were upregulated upon gga-miR-200a-3p overexpression. These findings have enhanced our knowledge of the immune function of gga-miR-200a-3p mediating the chicken immune response via regulation of the MAPK signaling pathway and indicate that this miRNA may serve as an important biomarker of diseases in domestic animals

    Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens

    Get PDF
    Objective Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1–AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. Methods We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. Results Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. Conclusion Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity

    MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus

    Get PDF
    The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs

    Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

    Get PDF
    Objective The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%–99%, while homologies between chicken and mammal proteins ranged between 13%–19%, and 13%–69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, β2-microglobulin, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology

    Prognosis according to the timing of percutaneous coronary intervention in non-ST segment elevation myocardial infarction, based on the Korean Acute Myocardial Infarction Registry (KAMIR)

    Get PDF
    Background: Patients with acute coronary syndrome without ST-segment elevation (ACS- -NSTE) are at risk for adverse cardiac events. Based on data in the Korean Acute Myocardial Infarction Registry (KAMIR), we analyzed the prognosis according to the timing of percutaneous coronary intervention (PCI) in patients with NSTEMI in Korea. Methods and results: 2,455 patients with NSTEMI in KAMIR were classified according to the time interval from the onset of cardiac symptoms to PCI. Patients in Group I underwent PCI within 24 hours of the onset of symptoms; in Group II between 24 and 48 hours; and in Group III after 48 hours. Major adverse cardiac events (MACEs) are defined as cardiac death, non-cardiac death, myocardial infarction, revascularization and coronary-artery bypass graft surgery. The MACEs were compared between groups. Of the 2,455 patients, 743 (30.2%) were assigned to Group I, 583 (23.7%) to Group II, and 1,129 (45.9%) to Group III. The total incidence of MACEs was higher in Group I than Group III, and similar between Groups I and II (Group I: 15.1%, Group II: 14.4%, Group III: 11.6%, p = 0.053). The incidence of MACEs in the intermediate TIMI risk score group had decreased as the intervention time was delayed. Conclusions: The prognosis according to the timing of PCI in patients with NSTEMI was similar based on the data in KAMIR. TIMI risk score was related to a high incidence of MACEs. (Cardiol J 2011; 18, 4: 421&#8211;429
    • …
    corecore