89,820 research outputs found
The Sampling-and-Learning Framework: A Statistical View of Evolutionary Algorithms
Evolutionary algorithms (EAs), a large class of general purpose optimization
algorithms inspired from the natural phenomena, are widely used in various
industrial optimizations and often show excellent performance. This paper
presents an attempt towards revealing their general power from a statistical
view of EAs. By summarizing a large range of EAs into the sampling-and-learning
framework, we show that the framework directly admits a general analysis on the
probable-absolute-approximate (PAA) query complexity. We particularly focus on
the framework with the learning subroutine being restricted as a binary
classification, which results in the sampling-and-classification (SAC)
algorithms. With the help of the learning theory, we obtain a general upper
bound on the PAA query complexity of SAC algorithms. We further compare SAC
algorithms with the uniform search in different situations. Under the
error-target independence condition, we show that SAC algorithms can achieve
polynomial speedup to the uniform search, but not super-polynomial speedup.
Under the one-side-error condition, we show that super-polynomial speedup can
be achieved. This work only touches the surface of the framework. Its power
under other conditions is still open
Do-It-Yourself Single Camera 3D Pointer Input Device
We present a new algorithm for single camera 3D reconstruction, or 3D input
for human-computer interfaces, based on precise tracking of an elongated
object, such as a pen, having a pattern of colored bands. To configure the
system, the user provides no more than one labelled image of a handmade
pointer, measurements of its colored bands, and the camera's pinhole projection
matrix. Other systems are of much higher cost and complexity, requiring
combinations of multiple cameras, stereocameras, and pointers with sensors and
lights. Instead of relying on information from multiple devices, we examine our
single view more closely, integrating geometric and appearance constraints to
robustly track the pointer in the presence of occlusion and distractor objects.
By probing objects of known geometry with the pointer, we demonstrate
acceptable accuracy of 3D localization.Comment: 8 pages, 6 figures, 2018 15th Conference on Computer and Robot Visio
- …