1,125 research outputs found
Two-Way Training for Discriminatory Channel Estimation in Wireless MIMO Systems
This work examines the use of two-way training to efficiently discriminate
the channel estimation performances at a legitimate receiver (LR) and an
unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless
system. This work improves upon the original discriminatory channel estimation
(DCE) scheme proposed by Chang et al where multiple stages of feedback and
retraining were used. While most studies on physical layer secrecy are under
the information-theoretic framework and focus directly on the data transmission
phase, studies on DCE focus on the training phase and aim to provide a
practical signal processing technique to discriminate between the channel
estimation performances at LR and UR. A key feature of DCE designs is the
insertion of artificial noise (AN) in the training signal to degrade the
channel estimation performance at UR. To do so, AN must be placed in a
carefully chosen subspace based on the transmitter's knowledge of LR's channel
in order to minimize its effect on LR. In this paper, we adopt the idea of
two-way training that allows both the transmitter and LR to send training
signals to facilitate channel estimation at both ends. Both reciprocal and
non-reciprocal channels are considered and a two-way DCE scheme is proposed for
each scenario. {For mathematical tractability, we assume that all terminals
employ the linear minimum mean square error criterion for channel estimation.
Based on the mean square error (MSE) of the channel estimates at all
terminals,} we formulate and solve an optimization problem where the optimal
power allocation between the training signal and AN is found by minimizing the
MSE of LR's channel estimate subject to a constraint on the MSE achievable at
UR. Numerical results show that the proposed DCE schemes can effectively
discriminate between the channel estimation and hence the data detection
performances at LR and UR.Comment: 1
Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems
Physical layer multicasting with opportunistic user selection (OUS) is
examined for multicell multi-antenna wireless systems. By adopting a two-layer
encoding scheme, a rate-adaptive channel code is applied in each fading block
to enable successful decoding by a chosen subset of users (which varies over
different blocks) and an application layer erasure code is employed across
multiple blocks to ensure that every user is able to recover the message after
decoding successfully in a sufficient number of blocks. The transmit signal and
code-rate in each block determine opportunistically the subset of users that
are able to successfully decode and can be chosen to maximize the long-term
multicast efficiency. The employment of OUS not only helps avoid
rate-limitations caused by the user with the worst channel, but also helps
coordinate interference among different cells and multicast groups. In this
work, efficient algorithms are proposed for the design of the transmit
covariance matrices, the physical layer code-rates, and the target user subsets
in each block. In the single group scenario, the system parameters are
determined by maximizing the group-rate, defined as the physical layer
code-rate times the fraction of users that can successfully decode in each
block. In the multi-group scenario, the system parameters are determined by
considering a group-rate balancing optimization problem, which is solved by a
successive convex approximation (SCA) approach. To further reduce the feedback
overhead, we also consider the case where only part of the users feed back
their channel vectors in each block and propose a design based on the balancing
of the expected group-rates. In addition to SCA, a sample average approximation
technique is also introduced to handle the probabilistic terms arising in this
problem. The effectiveness of the proposed schemes is demonstrated by computer
simulations.Comment: Accepted by IEEE Transactions on Signal Processin
Clean relaying aided cognitive radio under the coexistence constraint
We consider the interference-mitigation based cognitive radio where the
primary and secondary users can coexist at the same time and frequency bands,
under the constraint that the rate of the primary user (PU) must remain the
same with a single-user decoder. To meet such a coexistence constraint, the
relaying from the secondary user (SU) can help the PU's transmission under the
interference from the SU. However, the relayed signal in the known dirty paper
coding (DPC) based scheme is interfered by the SU's signal, and is not "clean".
In this paper, under the half-duplex constraints, we propose two new
transmission schemes aided by the clean relaying from the SU's transmitter and
receiver without interference from the SU. We name them as the clean
transmitter relaying (CT) and clean transmitter-receiver relaying (CTR) aided
cognitive radio, respectively. The rate and multiplexing gain performances of
CT and CTR in fading channels with various availabilities of the channel state
information at the transmitters (CSIT) are studied. Our CT generalizes the
celebrated DPC based scheme proposed previously. With full CSIT, the
multiplexing gain of the CTR is proved to be better (or no less) than that of
the previous DPC based schemes. This is because the silent period for decoding
the PU's messages for the DPC may not be necessary in the CTR. With only the
statistics of CSIT, we further prove that the CTR outperforms the rate
performance of the previous scheme in fast Rayleigh fading channels. The
numerical examples also show that in a large class of channels, the proposed CT
and CTR provide significant rate gains over the previous scheme with small
complexity penalties.Comment: 30 page
Two-way training for discriminatory channel estimation in wireless MIMO systems
This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances (and, thus, the effective received signal qualities) at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace, based on the transmitter's knowledge of LR's channel, in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and nonreciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals, we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and, hence, the data detection performances at LR and UR.This work was supported in part by the National Science Council, Taiwan, by Grant NSC 100-2628-E-007-025-MY3 and Grant NSC 101-2218-E-011-043, and in part by the Australian Research Council's Discovery Projects Funding Scheme (Project no.DP110102548)
Tunnelling rates for the nonlinear Wannier-Stark problem
We present a method to numerically compute accurate tunnelling rates for a
Bose-Einstein condensate which is described by the nonlinear Gross-Pitaevskii
equation. Our method is based on a sophisticated real-time integration of the
complex-scaled Gross-Pitaevskii equation, and it is capable of finding the
stationary eigenvalues for the Wannier-Stark problem. We show that even weak
nonlinearities have significant effects in the vicinity of very sensitive
resonant tunnelling peaks, which occur in the rates as a function of the Stark
field amplitude. The mean-field interaction induces a broadening and a shift of
the peaks, and the latter is explained by analytic perturbation theory
Simulating chemistry efficiently on fault-tolerant quantum computers
Quantum computers can in principle simulate quantum physics exponentially
faster than their classical counterparts, but some technical hurdles remain.
Here we consider methods to make proposed chemical simulation algorithms
computationally fast on fault-tolerant quantum computers in the circuit model.
Fault tolerance constrains the choice of available gates, so that arbitrary
gates required for a simulation algorithm must be constructed from sequences of
fundamental operations. We examine techniques for constructing arbitrary gates
which perform substantially faster than circuits based on the conventional
Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf.
Comput.}, \textbf{6}:81, 2006]. For a given approximation error ,
arbitrary single-qubit gates can be produced fault-tolerantly and using a
limited set of gates in time which is or ; with sufficient parallel preparation of ancillas, constant average
depth is possible using a method we call programmable ancilla rotations.
Moreover, we construct and analyze efficient implementations of first- and
second-quantized simulation algorithms using the fault-tolerant arbitrary gates
and other techniques, such as implementing various subroutines in constant
time. A specific example we analyze is the ground-state energy calculation for
Lithium hydride.Comment: 33 pages, 18 figure
Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV
We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) =
200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity
(-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these
kinematics and as a function of collision centrality (related to impact
parameter for the R_dAu collision). We find that the modification is largest
for collisions with small impact parameters, and observe a suppression
(R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we
observe a suppression for p_T1) for p_T>2
GeV/c. The observed enhancement at negative rapidity has implications for the
observed modification in heavy-ion collisions at high p_T.Comment: 384 authors, 24 pages, 19 figures, 13 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg123_data.htm
The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium
Bacterial permeability family member A1 (BPIFA1), also known as short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is a protein involved in the antiinflammatory response. The goal of this study was to determine whether BPIFA1 expression in asthmatic airways is regulated by genetic variations, altering epithelial responses to type 2 cytokines (e.g., IL-13). Nasal epithelial cells from patients with mild to severe asthma were collected from the National Heart, Lung. and Blood Institute Severe Asthma Research Program centers, genotyped for rs750064, and measured for BPIFA1. To determine the function of rs750064, cells were cultured at air-liquid interface and treated with 11-13 with or without recombinant human BPIFA1 (rhBPIFA1). Noncultured nasal cells with the rs750064 CC genotype had significantly less BPIFA1 mRNA expression than the CT and TT genotypes. Cultured CC versus CT and TT cells without stimulation maintained less BPIFA1 expression. With IL-13 treatment, CC genotype cells secreted more eotaxin-3 than CT and TT genotype cells. Also, rhBPIFA1 reduced IL-13-mediated eotaxin-3. BPIFA1 mRNA levels negatively correlated with serum IgE and fractional exhaled nitric oxide. Baseline FEV1% levels were lower in the asthma patients with the CC genotype (n = 1,016). Our data suggest that less BPIFA1 in asthma patients with the CC allele may predispose them to greater eosinophilic inflammation, which could be attenuated by rhBPIFA1 protein therapy.NIH/NHLBI [R01HL125128, U10HL109257, UL1TR00448, U10HL109168]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …